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Spectral/hp element methods and an arbitrary Lagrangian-Eulerian (ALE) moving-boundary technique
are used to investigate planar Newtonian extrudate swell. Newtonian extrudate swell arises when vis-
cous liquids exit long die slits. The problem is characterised by a stress singularity at the end of the slit
which is inherently difficult to capture and strongly influences the predicted swelling of the fluid. The
impact of inertia (0 < Re < 100) and slip along the die wall on the free surface profile and the velocity
and pressure values in the domain and around the singularity are investigated. The high order method
is shown to provide high resolution of the steep pressure profile at the singularity. The swelling ratio
and exit pressure loss are compared with existing results in the literature and the ability of high-order
methods to capture these values using significantly fewer degrees of freedom is demonstrated.
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1. Introduction

In this article, we investigate the extrudate swell phenomenon,
which is a radial swelling of free liquid jets exhibited by viscous
fluids exiting long die slits. This jet swelling is particularly strong
for viscoelastic fluids but is also exhibited by low Reynolds number
Newtonian fluids. The prediction of the swelling ratio is very
important in a range of industrial processes such as inkjet printing,
extrusion moulding or cable coating.

The swelling of Newtonian jets is mainly characterised by the
reorganisation of the velocity profile from the parabolic
Poiseuille flow inside the die to plug flow downstream [1]. This
transition is characterised by the sudden jump in the shear stress
at the die exit [2]. Inside the die, the shear stress at the wall is at
its maximum with particles sticking to the wall (for the no-slip
boundary condition). Then immediately after the die exit, the
removal of the wall shear stress causes a boundary layer to form
at the free surface. In this layer, the parabolic velocity profile
adjusts itself so as to satisfy the condition of zero shear stress at
the free surface. This sudden jump in the shear stress at the die exit
causes an almost instantaneous acceleration of the particles at the
free surface causing the fluid jet to swell.

Due to the presence of this stress singularity at the die exit,
numerical simulations of the extrudate swell phenomenon are
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particularly challenging. Analytically, this singularity originates
from the sudden change in the boundary condition from the wall
of the die to the free surface of the exiting jet. This “jump” in the
boundary condition yields steep and infinite stress and pressure
concentrations at the singular point. These infinite stress values
near the singularity affect the accuracy of the numerical solution
and the size of the swelling and therefore need to be resolved as
accurately as possible. In this contribution, we use a spectral/hp
element method to improve our ability to capture these stress con-
centrations. Traditional discretisation methods such as finite dif-
ferences or low-order finite elements require a very large
number of degrees of freedom to resolve these sharp stress
variations.

In this article, we will describe a spectral/hp method that is
capable of approximating the infinite stress values with an
exponential increase in the extreme values of the pressure with
p-refinement, i.e. with increasing polynomial order of the shape
functions in each element. This demonstrates that our high order
method provides a high-quality approximation of the stress singu-
larity with a very low number of degrees of freedom. We will give
detailed information about the pressure and velocity in the vicinity
of the singularity for a wide range of Reynolds numbers
(0 < Re £ 100) and for slip along the die wall. We demonstrate that
our method predicts swell ratios and exit pressure loss corrections
in excellent agreement with a recent numerical study of Mitsoulis
et al. [3] for our coarsest approximation P = 10. Mitsoulis et al. [3]
used a low order finite element method with a high mesh refine-
ment around the singularity.
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Typically, a decrease in the swelling is observed for an increase
in the resolution of the singularity. In the existing literature, the
stress values at the singularity are rarely addressed. Salamon
et al. [4] investigated the role of surface tension and slip on the sin-
gularity numerically and analytically. They demonstrated that a
very fine mesh near the singularity is needed to predict the singu-
lar pressure and stress behaviour with sufficient accuracy.
Georgiou and Boudouvis [5] compared the singular finite element
method with the regular finite element method for the extrudate
swell problem. In the singular finite element method, basis func-
tions in the elements around the singularity are enriched with
the local asymptotic solution for the singularity. They demon-
strated that with this method the predictions of the swell ratio
converged. However, the singular finite element method requires
the correct asymptotic behaviour of the pressure at the corner sin-
gularity and the asymptotic solution for the pressure is obtained
assuming Stokes-like behaviour around the singularity. This means
this approach is only accurate for Re = 0. Indeed, Georgiou and
Boudouvis [5] found that the singular finite element method was
outperformed by the regular finite element method for extrudate
swell including inertia. Our method is capable of resolving the
stress singularity with spectral convergence properties without
making any assumptions on the form of the singularity and this
represents a novel contribution.

Inertialess extrudate planar Newtonian swell has been investi-
gated in terms of swell ratios using low order finite elements by
a wide range of authors [6-9]. Tanner [ 1] provides a review of iner-
tialess Newtonian swell ratio results. Only very few investigations
involved the use of higher order methods. Ho and Renquist [10]
provided the first extrudate swell computation with a spectral
method for one coarse mesh with 8 spectral elements with polyno-
mial order 4 for Re = 0. They predicted a swell ratio of 1.1840.
Russo [2] used the spectral element method to predict free surface
profiles and swell ratios for 0 < Re < 10 and surface tension for 4
spectral elements with polynomial order 6 < P < 14. We use a
spectral element mesh with 14 spectral elements and
10 < P < 16 with a smaller element size around the singularity
providing a much higher resolution there compared with previous
studies. We will provide results for 0 < Re < 100 and for a slip con-
dition along the die wall.

In this article, the novel contributions to the development of
spectral element methods for free surface flows include the com-
bination of a cubic spline free surface representation with a har-
monic moving scheme for interior nodes. The spline
representation ensures that the outward normals of the free sur-
face boundary, which are used for tracking the free surface shape
are continuous across elements. This enhancement was necessary
to obtain reliable swelling ratio results and to stabilize the com-
putations. Russo [2] used only one element to represent the free
surface, which leads to a limited resolution of the singularity at
the die exit and less geometrical flexibility (e.g. folding of ele-
ment for contraction of free jet can create invalid elements).
The study of Ho and Renquist [10] used a single mesh and con-
sidered only inertialess flow. Therefore, the results of Ho and
Renquist [10] are rather limited. This paper offers the first com-
prehensive comparison of the prediction of high order schemes
with low order schemes.

The paper is organised as follows. In Section 2, we will intro-
duce the governing equations for the description of Newtonian free
surface flow and the equations of motion for the mesh movement.
We will conclude this section with a description of the boundary
conditions for the extrudate swell problem and the definition of
the quantities of interest such as swelling ratio and exit pressure
correction. In Section 3, we describe the numerical discretisation
of the governing equations. In Section 4, we give numerical results
for the impact of inertia and slip on the extrudate swell problem

including detailed plots for velocity and pressure profiles in differ-
ent parts of the domain.

2. Formulation
2.1. Governing equations of the fluid

The free surface motion of an incompressible fluid flow can be
characterised by the incompressible Navier-Stokes equations
describing the motion of the fluid and the motion of the free sur-
face. On a moving domain Q c R tel= (to,T), they can be
expressed as

Re(%—qu(u-V)u) =-Vp+2V-D inQ, tel, (1a)
V-u=0 inQ, tel, (1b)
u=u, inQ,, (1c)
u=up onoR, tel, (1d)

where u is the velocity, p is the pressure, D = 1(Vu + Vu') is the
rate of deformation tensor, Re is the Reynolds number, uq is the
velocity field at t =t and up is the assigned Dirichlet boundary
condition.

The motion of the free surface, I, is characterised by the fol-
lowing boundary conditions

u-n=w-n only
[6] - m=o0xn on [}

(kinematic), (2a)
(dynamic), (2b)

where w is the velocity of the free surface, ¢ is the surface tension
coefficient, k is the curvature of the free surface, n is the unit out-
ward normal to the free surface and [6] denotes the jump in the
Cauchy stress tensor across the free surface.

In order to track the free surface motion computationally, the
grid points of our computational mesh at the free surface are
moved with the normal fluid velocity, which ensures that particles
do not cross the interface and therefore that the kinematic condi-
tion (2a) is satisfied.

To avoid mesh distortion, the mesh points in the interior of the
domain are moved with an arbitrary speed. This use of arbitrary
mesh movement is known as the arbitrary Lagrangian-Eulerian
(ALE) technique. The ALE formulation relates the Navier-Stokes
equations on the moving domain (1) to a formulation on a referen-
tial configuration Qtn. At each t € I, each point of the reference con-
figuration Y is then associated to a point x in the current domain €,
using the so-called ALE-map [11-14], that is,

Re:Qy — Q, Yt=0,
Y - x(Y,t) = Re(Y), VYeQ,, 3)

where Y is called the ALE coordinate and x is the Eulerian coordi-
nate. The movement of the mesh, can then be characterised by
the following quantities

1. the mesh velocity

~ ox(Y,t)
ot

_ORAY)

w(x,t): . m

; (4)
Y

2. the material time derivative in terms of the time derivative with
respect to the ALE-frame
Df(x,t) _of

Dt fﬁYJr(u—W)'fo- ()

Eq. (1) in the ALE-formulation reads
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Re(% +(u—w)~qu>:—V,,p+2Vx-Dx forxe Q, tel,
Y

(6a)
Ve-u=0, forxeQ, tel, (6b)
u=u, forxeQ,, (6¢)
u=up, onxecod, tel (6d)

Here, D, = 1 (V,u+ V,u") is the rate of deformation tensor in the
Eulerian frame of reference.

2.2. Governing equations of the mesh

In addition to the motion of the fluid, we need to find a sensible
way to describe the domain movement. In general, the domain
movement is characterised by the movement of its boundary 9,
and can be described using the domain or mesh velocity w
[10,15], the ALE-mapping R(t) [14,13] or the displacement
d = Atw [16]. In the present work, we describe the domain move-
ment using the mesh velocity, w. For the domain movement, we
choose boundary conditions such that the kinematic boundary
condition is satisfied and mesh distortions are kept to a minimum,
that is,

w-n=u-n, on Ift), (7a)
w-s=0 on If(t), (7Db)
Vw-n=0 at outflow, (7¢)
w =0 elsewhere, (7d)

where s is the unit tangential vector on the free surface boundary.
In order to guarantee smooth mesh movement in the interior, we
solve an elliptic problem for the mesh velocity, given by

Aw =0 on &, (8)

subject to the boundary conditions (7). This harmonic mesh move-
ment preserves a high quality mesh for small displacements and
has been employed, for instance, by Ho and Renquist [10], Nobile
[14] and Pena [13]. However, for higher mesh deformations, other
elliptic problems may be solved for the movement of the domain,
such as elliptic operators arising from Stokes or elasticity problems
(see the monograph of Deville et al. [17] for further details).

2.3. Computational domain and quantities of interest

Consider the extrusion of a Newtonian liquid from a planar die.
The schematic diagram of the employed planar die geometry is
depicted in Fig. 1. We consider a die of length L; and height H,
and an exit region of length L,. The length of the die is chosen suf-
ficiently long in order to guarantee a fully developed flow far
upstream of the exit plane. In the following, we pay special atten-
tion to the following two quantities of interest: the swelling ratio
and the pressure exit correction factor. In practice, the extrudate

No-Slipu =0,w =0
or Slip u = B0y, v =0

2 2

U= Uip, V=0

Inflow:

A

107

swell ratio is of importance in extrusion processes and the excess
pressure loss gives an indication as to how much extra pressure
has to be applied to achieve certain swell ratios. The swelling ratio,
Yr» 15 defined as
hy
==, 9
where H is the half-height of the die and hy is the half-height of the
liquid jet at the outflow boundary. The swelling ratio is a function of
several parameters

Xr(H, (u),Re, By), (10)

where (u) is the average inflow velocity, Re is the Reynolds number
and By is the slip parameter along the die wall.

The dimensionless pressure exit correction factor, 1.y, is defined
as

Ap — Ap,

25, (11)

Nex =
where Ap is the pressure drop between the inlet and the outlet
plane, Ap, is the pressure drop between the inlet and the exit of
the die for fully developed Poiseuille flow and o, is the shear stress
at the channel wall corresponding to fully developed Poiseuille
flow. Here, the pressure differences are taken along the centreline.
In particular, the pressure drops are given by [1]

Apg =Dly_ 1, = ZO'W% Poiseuille flow for x € [-L;,0], (12)

Ap =pl,_ ;, —Ply, Extrudate Swell for x € [-L;,Ls]. (13)

In our computations, we employ the following boundary condi-
tions as depicted in Fig. 1 for a half-channel height of H = 1. We
assume the flow is symmetric and along the symmetry line, we
set v = 0 and gy, = 0. Note that, g,, = 0 is set through the bound-
ary integral in the momentum Eq. (27). For the die swell geometry
this means that there is no contribution of the Neumann boundary
integral in the momentum equation along the symmetry line. At
the die wall, we either impose no-slip boundary conditions (i.e.
u = 0) or Navier’s slip condition. The latter is a mixed boundary
condition of Dirichlet and Neumann type. For the extrudate swell
geometry depicted in Fig. 1, we set v =0 and impose o, = Blslu
through the Neumann boundary term in the momentum Eq. (27).
This means for the velocity component u along the slip boundary
I'y, we obtain the boundary integral
/ (6 -ng¢,)edl' = / luq&u dar, (14)

Iy I'y le
where e, is the unit vector in x-direction. At outflow, we employ an
open outflow boundary condition. We assume a reference pressure
p = 0 along the outflow boundary and the remaining terms in the
Neumann boundary integral along the outflow boundary in the
momentum equation are evaluated along with the volume inte-
grals. At inflow, we either impose the parabolic profile

Free Surface w-n=u-n
0-n=okn

Symmetry o,y =0, v =0, w=0

Ly

Ly

Fig. 1. Schematic of the symmetric die swell flow configuration. L; is the length of the die which has fixed boundaries and is of half-height H. L, is the length of the outflow
region, the boundaries of which are free to move. Boundary conditions are provided for each surface.
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u:i(l—yz), v=0 (15)

in combination with no-slip along the die wall or the profile [18]
_ 3 2 ou_ -3y _

a0 (0

in combination with the slip boundary condition. In the extrudate
swell problem the velocity field undergoes a transition from
Poiseuille flow inside the die to plug flow in the free jet region.
Due to the conservation of energy the flow rate in the die has to
be the same as in the uniform plug flow, which yields

1 H
thoive = 2 / ; u(y)dy, (17)
where hp, is the height of the fluid jet in the uniform flow region
and u(y) is the parabolic Poiseuille flow profile. We have
0 < Uplug < Umax, Which means that while particles at the free sur-
face accelerate when exiting the die the flow near the centreline
decelerates.

For the mesh velocity, we employ the following boundary con-
ditions. We consider the mesh to be fixed at inflow, the die wall
and along the symmetry line, i.e. w = (wy, w,) = 0. At the outflow
boundary, we allow the mesh to move in the y-direction, i.e.
Vw, -n = 0, and fix it in the x-direction, wy, = 0. At the free surface,
we enforce the kinematic boundary condition through the mesh
velocity in terms of a Dirichlet boundary condition for the
mesh-velocity, i.e.

w-n=u-n (18)

To avoid mesh distortion, we choose to move the mesh along the
free surface boundary only in the y-direction. The mesh is moved
with sufficient velocity w, in the y-direction to ensure that no par-
ticle crosses the interface, that is,
Ty
wy=0, wy=v+u—. (19)
ny

3. Numerical discretisation

In this section, we describe the spectral/hp element discretisa-
tion of the extrudate swell problem. Our software developments
are based on the spectral/hp element library Nektar++ [19].

3.1. Spectral element discretisation

Consider the decomposition of the domain Q; into N,
non-overlapping elements. These elements are each mapped to a
standard element on which the unknowns are approximated using
a modal polynomial expansion basis proposed by Dubiner [20] and
extended by Karniadakis and Sherwin [21]:

5= p=0,
bp(8) =1 (F)EHPIV(E), 0<p<P, (20)
s, p=P.

Here, ¢, and ¢, are the common linear finite element basis func-
tions and

wo-(59(5)

is the usual quadratic hierarchical expansion mode for quadratic
elements. Furthermore, P denotes the highest polynomial order of
the hierarchical expansion and Pff"/’)(i) denotes the pth-order
Jacobi polynomial.

Two-dimensional functions u(x,t) can be approximated on
standard quadrilaterals, defined as Qqu = {-1 < &;,¢&, < 1}, using
a tensor product of the one-dimensional modal expansion basis
functions ¢, that is,

P P
UX, ) =D > lpg(£)dp(E1) (&) (21)

p=04g=0

with the reference coordinates given by

=0y, G =[50 %), (22)

involving the inverse of the mapping yx°. Here, the mapping, x¢,
between the local coordinates (&;,&,) and the physical coordinates
(x,y) approximates the geometry with the same order polynomial
space as the solution, that is,

P P

X =20 (E1,8) = )Y Kngdp(E1)dg()- (23)
p=0gq=0

Details on the construction of this mapping can be found in

Karniadakis and Sherwin [21].

3.2. Weak formulation

We introduce the following function spaces in the current
frame with respect to the reference configuration f)to

V@) ={u:0x - Ru=tor, aeHy(@,)'},  (4a)
Vo(Q) = {u: 0 x I - R u=woR, e [H},(Qto)]d}, (24b)
Q) = {a: @ x 1= R :q=GoR,", Ge ()}, (24c)
Qo(Qt):{q:thIeRd:q:qORgl, E]EL?,(QO)}. (24d)
Here,

V(@) = {u Qi x] R u=0oR", Ge [Hg(fz[o)]d}, (25a)
Q) = {a: xI—= R :q=GoR,", Gel’(@)}, (25b)
QO(QI):{q:Qt><I—>Rd:q:(]oR;1, QEL?,(Q[O)} (25¢)
with

[H})(Q[O)]d - {u € [H1 (Qtu)r ‘u=0o0n FD}, (26a)
[H,g(fzto)r = {u e H'(Q))" - u=up on FD}, (26b)
L3(Q,) = {q e L*(Qy,) : A qdx = 0}7 (26¢)

where I'p, denotes the Dirichlet part of the boundary and d denotes
the spatial dimension. Using these function spaces, the weak formu-
lation of the system of Eqgs. (6) reads.

Problem 3.1 (Weak formulation of incompressible Navier-Stokes
equations). For almost every tel find t— (u(t),p(t)) € Vp(LQ)
x Qo () such that, for all (¢4, ) € V(Qr) x Q(L2)

Re <% + (u—w)-V,u, (bu) + (2D, Vaby) g, — (0s V- dy)g,
Y o
— (60, ¢y)r ) — (0K N, ¢u>rf(t) =0, (27)
(Va-u,)y =0, (28)
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where I'y(t) is the Neumann boundary and I's(t) is the free surface
boundary.

We choose the same trial and test function space for the mesh
velocity as for the fluid velocity and we solve Eq. (8) with the
boundary conditions (7) using a continuous Galerkin method.
The weak formulation for the mesh movement can therefore be
expressed as

Problem 3.2 (Weak Formulation Mesh Velocity). For almost every
telfind t — w(t) € Vp(Q;) such that, for all ¢y, € V(Q;)
(VW, V¢W)Qf =0, (29)

subject to the boundary conditions (7).
The position of the new nodes of the mesh can be obtained via
Eq. (4), that is,

Ox(Y, 1)
ot

~ OR(Y)
y Ot

= W(x,t). (30)
Y

3.3. Discrete ALE formulation

As mentioned above, we have two referential domains to con-
sider in the ALE formulation. Firstly, let Q) be the union of all
non-overlapping mesh elements in the Eulerian frame at time ¢
and secondly, let Qfo denote the union of all mesh elements in
the referential frame. Consider the following discrete trial and test
function spaces

N N . N d .
V(@) = {u:Q;’ xl— G u=to[R]] " we [Hy(4),)] m»;(Q:O)} (31)
for the fluid and mesh velocities and
() ={q:9f xI—R:q=qo[R}]", 4eL*(2))NPp z(gfo)} (32)

for the pressure field. Alternatively, these spaces can be expressed
as (see [13])

V() = [Ha(@)] 0 [P(@)’. (33)
Q° (@) = L*(Q)) N Pp_2 (). (34)

Here, 7312(9‘;0) denotes the globally continuous space of polynomials
of degree P over the reference mesh, that is,

GCARERA

(@) &g ot Pl .
35)

Pp(QfO) denotes the space of piecewise continuous polynomials of
degree P over the reference mesh, that is,

Po() = {&: 2, — Rlg’ €L2(@). £l ot Pl .

(36)

P5(2) denotes the globally continuous polynomial space over the

Eulerian mesh and P»(£?) denotes the piecewise continuous poly-

nomial space over the Eulerian mesh. Here, g‘i\gg denotes the
0

restriction of g° to the spectral element QﬁU,Pp(Qst) is the space of
polynomials of degree P defined on the standard element given by
the expansion basis (20). Note that, the pressure is discretised with
polynomials of order 2 lower than the velocities to satisfy the LBB
condition [22]. The spaces V3 (27) and Q°(2}) include the discrete
ALE mapping, which can be expressed as [14]

Rilg =200 ()] " Ve, (37)
involving the geometrical mappings, x¢(t), at time t, from the stan-
dard element @y to each element €, that is,

P P
X(&1,6) = X0(6:E1, &) = Y > Rog(t)dp(E1)dg (&), (38)

p=0g=0

where X,,(t) denotes the expansion coefficients at time ¢t and the
iso-parametric mapping, x¢(to), from Qs to Qﬁ , defined as

Y(f] ) 52) t07 g‘l ) 62 Zzypq¢p €‘1 ¢q ) (39)
p=0 q=0
Using these space definitions and an implicit Euler

time-integration scheme, the semi-discrete Navier-Stokes equa-
tions can be expressed as follows.

Problem 3.3 (Semi-discrete Navier-Stokes ALE formulation). For
each n, let t, = to + nAt, find (ul*!,pi*1) € (V3(2), ) x Q4(2, )
with ud = ug; in @ such that

un“ —uj x n+1 n+1
Re< : ¢u> + ([(ua - W; ) 'Vx}ué v¢u)g‘g ]
Q\ n+
+1

(ZD,'Z:‘ Viba)

i1

(pg+1 ) VX . ¢I.I)Q‘;

n+1

(6T gy, (OKs D5 dg) ) = O, (40)
(vx' n+1 l/j)Q; . = 0» (41)
for all (¢y, 1) € V(2 ) x Q°(2;,,))- Here, we linearise the con-

vective term in the momentum equation by setting u; = u}}, which
is an extrapolation of the velocity of the same order as the implicit
Euler scheme. Note that, the index S for normals and curvature in
the boundary integral over I'f(t,.1) indicates that these quantities
are determined from a cubic spline representation of the free sur-
face according to Eqs. (49) and (50) defined below.

3.4. Matrix formulation

The discrete ALE formulation involves the following matrices

MO = g (4404, (42)

Ke(0)[j][i] = (qus:', + Vil wﬂ);ﬂ

(Ve a0l ) ) (43)
Bt W) 1] = ([(0s - W) Vo)., (44)
()}l = (Vo). W)Qﬁ (45)
b)) = (ons - “5’4’{'>rfm’ (46)

and a modified Helmholtz matrix
He(0)[j][i] := ME(6)[j][i] + K () [j][i] + B°(¢; w5, wi) [j][i]. (47)

The equation system (40) and (41) can then be written for each ele-
ment in algebraic form as

Hy ()00 — Dy (6r1) Ppt" = M(t1)0" + bty 1),
Dy (to)! =0, (48)
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I o A M 4 A 0 1 1 I 1

-1 -05 0 05 1 15 2 25 3 35
X

Fig. 2. Mesh configuration used for the extrudate swell computation.

Table 1
Newtonian swelling ratios for Re = 0.
Method DOF AR
Crochet and Keunings [8] FEM 562 1.200
1178 1.196
Reddy and Tanner [9] FEM 254 1.199
Mitsoulis et al. [3] FEM 11,270 1.191

30,366 1.186

FEM (SFEM) 7528  1.1919 (1.1863)
FEM (SFEM) 12,642  1.1888 (1.1863)

Georgiou and Boudouvis [5]

where u, and p, are the vectors of unknown global coefficients and
H;,D, = (D,,,D,,) are the global matrices assembled from the ele-
mental matrix contributions. The resulting system of equations is
then solved using a multi-level static condensation technique intro-
duced by Ainsworth and Sherwin [23], Sherwin and Ainsworth [24]
and Karniadakis and Sherwin [21] for the Stokes equations in fixed
domains.

3.5. Discretisation of mesh movement

Even though solving Problem 3.2 yields continuous mesh move-
ment, the free surface boundary might not be sufficiently smooth.
The free surface boundary undergoes the largest deformation and
its movement involves the evaluation of outward normals, n, in
Eq. (7), across multiple elements. Note that, a standard Galerkin
method with a C°-continuity across elements is not sufficient to
determine a well-defined normal at element edges. To alleviate
this problem, we represent the free surface using a cubic spline,
S(x,t) € C*(I'y) to ensure sufficient smoothness of the free surface
boundary edges of the mesh. The cubic spline can then be used
to determine the unit outward normals n and the curvature x of
the free surface using

1 (—S’(x, t))7 (49)
Sxo?+1\ 1

S
(1+Sx 0>

ng(t) =

(50)

These expressions are then used to evaluate the free surface bound-
ary condition for the mesh velocity given by Eq. (7) and the free sur-
face boundary integral in the momentum equation

/ oKsNsd, dI’. (51)
Iy

For given u", we perform the mesh movement in the following way.
First, we determine the cubic spline through all the quadrature
points along the free surface. Let (x;,y;), 1 <i < N, be the physical
coordinates of the N quadrature points along the free surface.

Table 2
Comparison of swell ratios and exit pressure corrections for increasing number of
degrees for freedom (DOF) between our algorithm and Taliadorou et al. [25].

Spectral/hp method Taliadorou et al. [25] FEM

P DOF hy Nex DOF hy Nex

8 2624  1.1928  0.1507
10 4116 11912 01503 37208 11953  0.1514
12 5944 11901 01497 43320 11908  0.1491
14 8108 11900  0.1491 49864 11893  0.1482
16 10608 11891 01485 60490 11878  0.1473

Then, we construct a cubic spline S(x,t) =S;(x,t) for each
X < X < X1 through

Six, 1) = ai(x = %) + bi(x = %) + 6i(x — x;) + (52)
where we enforce continuity

Si1(x;,t) = Si(xi, t),

Si(Xiz1,t) = Siv1(Xis1, ) (53)
and smoothness

Sl/'—l (Xiv t) = S?(xiv t)v
S:/—l (Xh t)= S;/(Xiv l'),
S;(XHI ) t) = S;+1 (xi+1 3 t)’

Si (Xia1,) = Sity (Xisa, 1) (54)
We employ the not-a-knot boundary condition on the spline, that is,
SY (%) = S5 (x2), (55)
Sn-1(Xn-1) = Sy_a (Xn-1)- (56)

We then solve the elliptic problem (29) using the continuous
Galerkin method, determining

LW, =0, (57)

where L, is the global Laplace matrix given by

L(6) i) = (Vath, Vi)

' 58
Qf.(w ( )
subject to the boundary conditions (7), which include the normal
determined by the cubic spline according to (49).

The mesh velocity resulting from the solution of Eq. (57),
denoted by w, is then used to update the coordinates of the mesh
nodes using a third order Adams-Bashforth-Scheme for Eq. (4),
that is,

X" =X" 4 % (23w — 16W" + 5w ). (39)

This equation is solved pointwise in the strong form for each
quadrature point. However, in practice, we do not move all the
mesh nodes of every element. We only move all the quadrature
points along the free surface boundary introducing curved edges
along the free surface boundary. In the interior of the domain, we
just move the corner vertices of every element keeping the interior
edges of the domain straight.

Using the new coordinates of all mesh nodes, we compute the
mesh velocity at the new time level pointwise as

xn+1 _ xn

wn+1 _
At

(60)

3.6. Algorithm summary

In summary, the solution procedure is outlined in Algorithm
3.1. Note that, the boundary conditions at the free surface (2a)
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Fig. 4. Comparison of swell ratios for Newtonian fluid from the current study
(P = 10) with Mitsoulis et al. [3].

and (2b) are enforced in the algorithm as follows. In the first step,
the mesh is moved with a mesh velocity that satisfies the kine-
matic boundary condition (2a). Here, the elliptic system (29) is
solved with strong enforcement of boundary condition (19) and
therefore strongly enforces the kinematic boundary condition. In
the second step, the coupled system of velocity and pressure (40)
and (41) is solved. Here, the dynamic boundary condition (2b) is
set through the boundary integral term on the free surface as

detailed in Eq. (40). The algorithm iterates between step 1 and step
2untiiw-n=u-n=0.

Algorighm 3.1. ALE scHEME. (u", p")

t=to
while ¢ < tg,

procedure MovEMESH(u", p", T")

Construct Cubic Spline through Free Surface Boundary.
Set BC for Mesh Velocity (see (7)).
Solve Elliptic Problem for Mesh Velocity (29).
output (w")
Compute New Mesh Coordinates X™*'.
Construct New Parametric Mappings 2¢(tn1).

do output Q;, ,

Set Boundary Conditions for u and p.

procedure SOLVECOUPLEDSYSTEM(u”, p", w"*1)
Solve Coupled System of Velocity, Pressure
Olltpllt (un+] , pn+l)

tri1 — o + At
n+1l<n
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Table 3
Comparison of Newtonian die swell ratio for increasing Reynolds number with
Mitsoulis et al. [3].

Re Mitsoulis et al. [3] P=10 Re Mitsoulis et al. [3] P=10
0 1.1915 1.1912 10  0.9842 0.9846
1 1.1885 1.1873 20 09168 0.9161
2 1.1687 1.1665 30  0.8960 0.8903
3 1.1394 1.1370 40 0.877

4 1.1060 50 0.8691 0.8692
5 1.0775 1.0774 60 0.8643
6 1.0525 70 0.8611
7 1.0313 80  0.8564 0.8592
8 1.0124 1.0132 90 0.8579
9 0.9977 100 0.85103 0.8573

4. Numerical results
4.1. Mesh configuration

We use a mesh consisting of N, = 14 elements as shown in Fig. 2
and refine the mesh by increasing the polynomial order P. We con-
sider a die of length L; = 10 and an exit region of length L, = 10.
The entry length is sufficient to guarantee a fully developed flow
far upstream from the exit of the die. The exit length is chosen suffi-
ciently long to allow the free surface to reach a constant downstream
height for a large range of Reynolds numbers. For high Reynolds
numbers, the free jet length might be insufficient to guarantee a fully
developed plug flow profile at outflow. However, the use of the open
outflow boundary condition enables us to predict the correct swel-
ling ratios truncated at the outflow boundary location (see [3]).

Throughout this section, we choose a time step of 5 x 107,

4.2. Numerical results for Re = 0

Inertialess Newtonian extrudate swell has been investigated in
a number of publications. Table 1 summarises some of the swelling

—Re=0
—Re=1
— Re=2
— Re=3
—Re=4

Re=5

ratios obtained by a range of authors for plane Newtonian die
swell. Tanner [1] used the results in the literature to estimate an
extrapolated value for planar die swell of y, = 1.190 & 0.002. In
general, an increase in the number of degrees of freedom yields
less swelling.

Table 2 lists a comparison of the pressure exit correction for
Re =0 of our scheme and the swell ratio for increasing mesh
refinement with the results obtained by Taliadorou et al. [25].
We obtain close agreement for a much smaller number of degrees
of freedom, which demonstrates that p-refinement is effective for
the Newtonian extrudate swell even though the result is polluted
by Gibbs oscillations in the pressure around the singularity
(Fig. 3(c)). The Gibbs oscillations in the pressure stay confined to
the elements adjacent to the singularity. Increasing the Reynolds
number leads to a dampening in the oscillations in the elements
adjacent to the singularity and the extreme values of the pressure
at the singularity decrease significantly (Fig. 11(b)). As shown in
Fig. 3(c) increasing the polynomial order yields an increase in the
number of oscillations. However, the amplitude of each oscillation
is reduced with increasing polynomial order P. Increasing the poly-
nomial order also has the effect of exponentially increasing the
maximum value of the pressure and sharply increasing the mini-
mum value of the pressure at the singularity which reflects an
improved approximation of the infinite pressure value at the sin-
gularity (Fig. 3(d)). While the infinite pressure values at the singu-
larity hamper the rate of convergence of the numerical pressure
solution, the values of the velocity components along the free sur-
face are converged for P > 10 (see Fig. 3(a) and (b)).

4.3. Impact of inertia

Inertia causes a decrease of the swelling and the liquid jet even-
tually contracts for sufficiently high Reynolds numbers. We per-
formed computations for Reynolds numbers ranging from 0 to
100. We start by computing the extrudate swell for Re = 0 and ini-
tialise this computation with the solution of the corresponding
stick-slip problem. The stick-slip problem corresponds to the

— Re=6
—Re=7
—Re=8
Re=9
—Re=10

0 2 4 6 8 10

—Re=20
1 —Re=40
—Re=60

—Re=80
—Re=100

Fig. 5. Free surface spline profiles for Newtonian extrudate swell for P = 10 for a range of Reynolds numbers.
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Fig. 6. Horizontal velocity component u for P = 10 for (a) Re =0, (b) Re = 3, (c)
Re =7, (d) Re =10 and (e) Re = 50. Contours are indicated at intervals of 0.1.
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limiting case of the extrudate swell problem with infinite surface
tension, which causes the free surface to be flat. Hence, the free
surface remains fixed if it is initialised by a straight horizontal
boundary. The boundary conditions are the same as depicted in
Fig. 1 featuring a sudden change in the boundary condition from
no-slip conditions along the channel walls (stick) to perfect slip
conditions along the planar ‘free’ surface. After having obtained
the extrudate swell for Re = 0, we increase the Reynolds number
in steps of 1 from 1 to 10 and in steps of 10 from 10 to 100, each
time using the result of the converged extrudate swell of the pre-
vious lower Reynolds number as the initial condition. As the con-
vergence criterion, we choose a change of the maximum absolute
value of all variables including the mesh velocity of less than

10°°. Fig. 4 and Table 3 shows the comparison of the swelling
ratios obtained with our algorithm with the results of Mitsoulis
et al. [3], which are in excellent agreement.

Fig. 5 displays the corresponding free surface spline profiles. We
observe that the swelling ratio decreases at an accelerating pace
with increasing Reynolds number until Re = 6. For Re = 6, we see
the onset of a delayed die swell in which the fluid surface first goes
through a minimum before it swells again. The delay in the swel-
ling of the jet increases with increasing Reynolds number from
Re=6 to Re=10. For Re=9 and Re =10, the fluid contracts
(yr < 1) but still experiences some swelling after going through a
minimum near the die exit. For Re = 20 to Re = 100 the fluid does
not experience any delayed swelling and contracts. For
10 < Re <40 the fluid contracts very fast with increasing
Reynolds number. This trend in the contraction rate with increas-
ing Reynolds number then slows down and approaches a limit for
40 < Re < 100. The limit for infinite Reynolds number was esti-
mated by Tillett [26] who performed a boundary layer analysis
for a free Newtonian jet and predicted a limiting value of
%z = 0.8333 for infinite Reynolds number.

0.8
-10-8 6 -4 -2 0 2 4 6 8 10
xr

(a) Velocity component u along symmetry line (v = 0).

0.6
0.4 -

— Re=0
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0 2 4 6 8 10

T
(b) Velocity component u along free surface.

(c) Velocity component v along free surface.

Fig. 7. Dependency of velocity components along (a) the symmetry line and (b)-(c) along the free surface on the Reynolds number.
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Fig. 8. Vertical velocity v for P = 10 for (a) Re = 0, (b) Re = 3, (c) Re = 7, (d) Re = 10
and (e) Re = 50.

We explore the contour plots of the velocity field for a range of
Reynolds numbers in Fig. 6 (horizontal velocity component 1) and
8 (vertical velocity component »). With increasing Reynolds num-
ber the horizontal velocity increases along the centreline, the ver-
tical velocity near the singularity induced by the sudden change in
the boundary condition decreases and the transition zone under
the free surface from Poiseuille flow in the die to plug flow is
extended downstream. This shows that with increasing Reynolds
number the particles along the centreline are accelerated and
decelerated near the free surface yielding the contraction of the
free fluid jet. This is indeed the behaviour we would expect as par-
ticles leaving the die will deviate less from their initial path for
increasing inertia. As pointed out by Mitsoulis et al. [3] in order
to accommodate the whole transition zone the domain length of
the free fluid jet should be chosen as L, = Re. However, we employ
open boundary conditions at outflow which enables us to compute
the extrudate swell accurately in the truncated domain with

1.4
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1.2 e =—0.2
—z=0.0
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=
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(a) Velocity component u in cross stream direction.
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0 5.10201 015 02 025 0.3

v
(b) Velocity component v in cross stream direction.

Fig. 9. Velocity components in cross stream direction for Re =0 at inflow
(x = —10), near the die exit (x = —0.2,x = 0.2), at the die exit (x = 0), further
downstream in the free jet region x = 1 and at outflow x = 10.

L, = 10. As demonstrated by Mitsoulis and Malamataris [27] the
results for extrudate swell with a domain length L, = 6 are virtu-
ally identical with those from long domains with L, = Re, for all
variables, when using the open boundary condition at outflow.
However, in this case, the swell ratio results are only correct up
to the truncated length as they continuously drop beyond the trun-
cated domain. A small discrepancy between swell ratios for differ-
ent domain lengths can therefore be expected.

To investigate the transition from Poiseuille flow to plug flow
for increasing Reynolds number further, we plot the velocity and
pressure along different paths in the domain. Fig. 7 displays the
velocity components along the symmetry line (i.e. = 0) and along
the free surface boundary. In Fig. 7(a), we see the smooth transition
of the velocity field from the maximum of the parabolic profile to
the average plug flow velocity given by Eq. (17), i.e. upjug = 1/ . As
the swell decreases with increasing Reynolds number the plug flow
value of the velocity increases with increasing Reynolds number.
With increasing Reynolds number the change from the maximum
parabolic value of the velocity component u to the plug flow value
shifts further downstream. For Re = 0, the velocity reaches the plug
flow value at around x ~ 3, for Re = 10 at x ~ 6 and for Re = 50 the
plug flow value is not reached within our computational domain.
However, as pointed out above, due to the use of open boundary
conditions at outflow, the velocity and pressure profiles stay accu-
rate even if they are truncated at outflow.

Along the free surface boundary (Fig. 7(b)), the velocity compo-
nent u increases sharply near the die exit until it reaches the plug
flow value while the velocity component v goes through a maxi-
mum near the die exit for Re = 0 and Re = 3 and through a mini-
mum for Re > 7, when particles are no longer constrained by the
no-slip boundary condition (Fig. 7(c)). This causes the swell (for
v > 0) or the contraction (for v < 0) of the free surface near the
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Fig. 10. Pressure p for P = 10 for (a) Re = 0, (b) Re = 3, (c) Re = 7, (d) Re = 10 and
(e) Re = 50. Contours are indicated at intervals of 0.1.

die exit until the surface is sufficiently curved to obtain a zero total
shear stress (i.e. t- 6 -n = 0). Further downstream when the free
surface boundary has reached its maximum swelling value, the
vertical velocity component reaches zero in accordance with the
condition of no particle penetration along the surface (horizontal
free surface boundary has outward normal n = (0, 1) and therefore
u-n= v =0). The maximum value of » along the free surface
decreases with increasing Reynolds number (0 < Re < 5). For the
range of Reynolds number that causes a delayed die swell the
velocity component v first undergoes a sharp minimum and then
goes through a maximum (6 < Re < 10). For the range of
Reynolds numbers that cause a contraction of the free Newtonian
jet, the velocity component v goes through a minimum and then
slowly approaches zero (Re > 10).

Fig. 9 shows the velocity components in the cross stream wise
direction at inflow (x = —10), near the die exit (x = —0.2,x = 0.2),
at the die exit (x = 0), further downstream in the free jet region
x = 1 and at outflow x = 10. The velocity component u, is parabolic
at inflow, shortly before the die exit (x = —0.2) the parabolic profile
flattens inside the die, after the die exit the parabolic profile flat-
tens further and builds a boundary layer in which it goes through
a minimum at x = 0.2, then flattens increasingly until the plug flow
value is reached. The vertical velocity component, which is zero at

inflow, forms a parabolic-like profile with a small boundary layer
near the die exit inside the die, the boundary layer then sharpens
at the die exit and shortly after the die exit, before it relaxes back
to the zero value in the free jet region.

In the contour plots for the pressure p displayed in Fig. 10,
we observe that the pressure isobars are curved near the die
exit and in the free jet region into the downstream direction
for low Reynolds number (Re =0,3,7) and into the upstream
direction for higher Reynolds numbers (Re > 10). The change
in the pressure becomes more apparent when we explore the
pressure values along the symmetry line (Fig. 11(a)). Inside
the die, the pressure gradient is constant as expected for
Poiseuille flow. However, near the die exit (x = 0) the pressure
smoothly approaches zero for the plug flow. For higher
Reynolds numbers the pressure on the centreline goes through
a minimum. This behaviour of the pressure yields a shift in
the pressure values at inflow, which is expressed by the pres-
sure exit correction as defined in Eq. (11).

Figs. 3(c) and 11(b) show the pressure values around the sin-
gularity at the die exit. The approximation of the infinite pressure
at the singularity results in extreme pressure values at the singu-
larity which correspond to the extreme values of the colour
legend of the contour plot in Fig. 10. The pressure undergoes
Gibbs oscillations that are confined to the elements adjacent to
the singularity which are dampened with increasing Reynolds
number. Additionally, the approximated extreme values of the
pressure at the singularity decrease significantly with increasing
Reynolds number.
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Fig. 11. Plots of pressure p along (a) the centreline and (b) the wall and the free
surface.
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Table 4

Dependence of the swelling ratio on P for By = 0.1 and By = 0.01.
P By =0.1 By =0.01
10 1.1041 1.1671
12 1.1041 1.1673
14 1.1040 1.1670
Mitsoulis et al. [3] 1.1041 1.1708

4.4. Impact of slip

To alleviate the pressure singularity at the die exit, we investi-
gate the effect of slip along the die wall on the dependent variables
for Re = 0. We therefore change the inflow profile according to Eq.
(16) and employ the slip condition (14) along the die wall. We
explore the velocity field and the pressure along the free surface
for slip parameter values of By =0.01,B4=0.1 and By =0
(no-slip) in Fig. 12. With the introduction of slip along the wall,
the horizontal velocity component experiences a smooth transition
at the die exit in vast contrast to the kink at the singularity that is
observed for the no-slip condition (By=0) along the wall
(Fig. 12(Q)). The change for the vertical velocity remains sudden
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Fig. 13. Free surface spline profiles for increasing slip parameter for Re = 0.

and features a kink at the singularity. However, the maximum
value of the vertical velocity component decreases with increasing
slip (Fig. 12(c)).

The pressure profile at the singularity is changed drastically
with slip along the wall and the Gibbs oscillations disappear
(Fig. 12(e) and (f)). Even though the minimum of the pressure does
not show a converging trend in the range of the employed



S. Claus et al./Computers & Fluids 116 (2015) 105-117 117

polynomial orders, its value only increases slightly with increasing
P (Fig. 12(f)). Table 4 lists the swelling ratios for increasing polyno-
mial order, P, for By = 0.1 and By = 0.01. The swelling ratios are
converged to three decimal places. Fig. 12(b) and (d) shows that
the velocity values are converged for P > 10. The free surface
spline for increasing slip parameter is shown in Fig. 13.
Increasing the slip parameter yields a decrease in swelling.

5. Conclusions

In this article, we have demonstrated the capabilities of the
high-order spectral element method in the resolution of the stress
singularity at the die exit in the plane Newtonian extrudate swell
problem. We have shown that the spectral method approximates
the infinite pressure value with exponentially increasing extreme
values for increasing polynomial order. This high resolution
approximation of the steep stress profiles yields excellent predic-
tions of the swelling ratio. Our method predicts the same swelling
ratio in comparison to low order finite element methods with sig-
nificantly fewer number of degrees of freedom.

The only drawback of our high order method is the Gibbs oscil-
lations, which appear in the vicinity of the singularity for the pres-
sure approximation. These Gibbs oscillations are intrinsic to high
order methods and they occur in the approximation of discontinu-
ities or steep profiles. However, we have demonstrated that for the
extrudate swell problem, the Gibbs oscillations stay confined to
one element next to the singularity and their amplitude decreases
significantly with increasing polynomial order. This small pollution
in the pressure profile is the price to pay in the high order method
for the otherwise excellent prediction of the steep pressure
increase at the singularity.

We have given detailed results for a wide range of Reynolds
numbers 0 < Re < 100 in terms of swell ratios, exit pressure losses,
free surface profiles and velocity and pressure values. For the free
surface profiles, we find three extrudate swell regimes. The first is
areduction in swelling (Re < 6), the second is a regime of a delayed
swelling (7 < Re < 10) and the third a contraction of the free liquid
jet (10 < Re < 100). With increasing Reynolds number the maxi-
mum pressure values decrease and the Gibbs oscillations decrease.
We have then investigated the effect of slip along the die wall. We
have observed a reduction of the swelling for different slip param-
eters By = {0.01,0.1} and have observed a drastic change in the
pressure profile which showed no occurrence of Gibbs oscillations.

Acknowledgements

The authors wish to warmly thank Prof. Evan Mitsoulis for gen-
erously providing detailed data of his extrudate swell results. The
first author would like to thank the UK Engineering and Physical
Sciences Research Council for financial support (grant numbers
EP/P503329 and EP/504139).

References

[1] Tanner R. Engineering rheology. Oxford: Oxford University Press; 2002.

[2] Russo G. Spectral element methods for predicting the die-swell of Newtonian
and viscoelastic fluids. PhD thesis, School of Mathematics, Cardiff University,
Wales (UK); 2009.

[3] Mitsoulis E, Georgiou G, Kountouriotis Z. A study of various factors affecting
Newtonian extrudate swell. Comput Fluids 2012;57(0):195-207.

[4] Salamon T, Bornside D, Armstrong R, Brown R. The role of surface tension in
the dominant balance in the die swell singularity. Phys Fluids
1995;7(10):2328-44.

[5] Georgiou G, Boudouvis A. Converged solutions of the Newtonian extrudate-
swell problem. Int ] Numer Methods Fluids 1999;29(3):363-71.

[6] Tanner R. Die-swell reconsidered: some numerical solutions using a finite
element program. In: Appl Polym Symp, vol. 20; 1973. p. 201-8.

[7] Nickell R, Tanner R, Caswell B. The solution of viscous incompressible jet and
free-surface flows using finite-element methods. ] Fluid Mech 1974;65(1):189.

[8] Crochet M, Keunings R. Finite element analysis of die swell of a highly elastic
fluid. ] Non-Newton Fluid Mech 1982;10(3):339-56.

[9] Reddy K, Tanner R. Finite element solution of viscous jet flows with surface
tension. Comput Fluids 1978;6(2):83-91.

[10] Ho L, Renquist E. Spectral element solution of steady incompressible viscous
free-surface flows. Finite Elem Anal Des 1994;16(3-4):207-27.

[11] Donea ], Huerta A, Ponthot ], Rodriguez-Ferran A. Arbitrary Lagrangian-
Eulerian methods. Encyclopedia Compos Mech 2004.

[12] Scovazzi G, Hughes T. Lecture notes on continuum mechanics on arbitrary
moving domains. Tech rep, Technical report SAND-2007-6312P, Sandia
National Laboratories; 2007.

[13] Pena G. Spectral element approximation of the incompressible Navier-Stokes
equations in a moving domain and applications. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne; 2009.

[14] Nobile F. Numerical approximation of fluid-structure interaction problems
with application to haemodynamics. PhD thesis, Ecole Polytechnique Féderale
de Lausanne, Switzerland; 2001.

[15] Robertson I, Sherwin S, Graham ]. Comparison of wall boundary conditions for
numerical viscous free surface flow simulation. ] Fluids Struct
2004;19(4):525-42.

[16] Choi Y, Hulsen M. Simulation of extrudate swell using an extended finite
element method. Korea-Aust Rheol ] 2011;23(3):147-54.

[17] Deville M, Fischer P, Mund E. High-order methods for incompressible fluid
flow, vol. 9. Cambridge: Cambridge Univ. Pr.; 2002.

[18] Kountouriotis Z, Georgiou G, Mitsoulis E. On the combined effects of slip,
compressibility, and inertia on the newtonian extrudate-swell flow problem.
Comput Fluids 2013;71:297-305.

[19] Cantwell C, Moxey D, Comerford A, Bolis A, Rocco G, Mengaldo G, et al.
Nektar++: an open-source spectral/element framework. Comput Phys
Commun 2015.

[20] Dubiner M. Spectral methods on triangles and other domains. ] Sci Comput
1991;6:345-90.

[21] Karniadakis GE, Sherwin SJ. Spectral/hp element methods for computational
fluid dynamics. Oxford: Oxford University Press; 2005.

[22] Brezzi F. On the existence, uniqueness and approximation of saddle-point
problems arising from Lagrangian multipliers. RAIRO Anal Numér
1974;8:129-51.

[23] Ainsworth M, Sherwin S. Domain decomposition preconditioners for p and hp
finite element approximation of Stokes’ equations. Comput Methods Appl
Mech Eng 1999;175(3-4):243-66.

[24] Sherwin S, Ainsworth M. Unsteady Navier-Stokes solvers using hybrid
spectral/hp element methods. Appl Numer Math 2000;33(1-4):357-63.

[25] Taliadorou E, Georgiou G, Mitsoulis E. Numerical simulation of the extrusion of
strongly compressible Newtonian liquids. Rheol Acta 2007;47(1):49-62.

[26] Tillett J. On the laminar flow in a free jet of liquid at high reynolds numbers. ]
Fluid Mech 1968;32(2):273-92.

[27] Mitsoulis E, Malamataris N. Free (open) boundary condition: some experiences
with viscous flow simulations. Int ] Numer Methods Fluids
2011;68(10):1299-323.


http://refhub.elsevier.com/S0045-7930(15)00111-5/h0005
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0015
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0015
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0020
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0020
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0020
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0025
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0025
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0035
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0035
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0040
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0040
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0045
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0045
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0050
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0050
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0055
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0055
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0075
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0075
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0075
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0080
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0080
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0085
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0085
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0090
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0090
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0090
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0095
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0095
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0095
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0100
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0100
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0105
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0105
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0110
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0110
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0110
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0115
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0115
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0115
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0120
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0120
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0125
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0125
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0130
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0130
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0135
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0135
http://refhub.elsevier.com/S0045-7930(15)00111-5/h0135

	Spectral/hp element methods for plane Newtonian extrudate swell
	1 Introduction
	2 Formulation
	2.1 Governing equations of the fluid
	2.2 Governing equations of the mesh
	2.3 Computational domain and quantities of interest

	3 Numerical discretisation
	3.1 Spectral element discretisation
	3.2 Weak formulation
	3.3 Discrete ALE formulation
	3.4 Matrix formulation
	3.5 Discretisation of mesh movement
	3.6 Algorithm summary

	4 Numerical results
	4.1 Mesh configuration
	4.2 Numerical results for ? 
	4.3 Impact of inertia
	4.4 Impact of slip

	5 Conclusions
	Acknowledgements
	References


