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Abstract: The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the 
desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite 
element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, 

modified to accommodate a 0 -C continuous expansion. Computationally and theoretically, by increasing the polynomial order p , 

high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential 
reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many 
simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp 
element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the 
spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order 
to use the spectral/hp element method in more complex science and engineering applications are discussed. 
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Introduction 
Over the past few decades, computational fluid 

dynamics (CFD) has become increasingly powerful 
and has therefore been seen as the natural starting 
point to investigate a variety of mathematical and 
physical problems in science and engineering. Traditio- 
nally, “low-order methods” with up to second-order 
spatial accuracy have been widely adopted as the 
default implementation for the simulation of fluid 
flows, often based around the Reynolds averaged 
Navier-Stokes (RANS) equations. This approach has 
achieved a great deal of success in many applications 
due to its well-established robustness and efficiency. 
However, as the demands on the accuracy of CFD 
outputs have increased, such as requiring the solution 
of the unsteady flow equations in complex geometries, 
low-order methods are less able to provide the neces- 
sary level of precision in capturing transient dynamics, 
as compared to higher accuracy schemes for a given 
computational cost. Therefore, there is currently a 
great interest in the development and application of 
high-order methods such as the spectral/hp element 
discretisation. 

Finite element methods are widely used across a 
broad range of engineering and scientific disciplines. 
They can be categorised into three classes[1, 2]: (1) the 
classical h-version finite element method, (2) the 
spectral element method, or p-version finite element 
method, (3) the hp-version finite element method, 
called the spectral/hp element method. Once the com- 
putational domain is partitioned into a non-overlap- 
ping element set, the spectral/hp element method 
employs a “spectral-like” approach in each element, 
representing the solution through a basis of poly- 
nomials. Therefore, the spectral/hp element method 
combines the advantages of the spectral element 
method, in terms of the properties of accuracy and 
rapid convergence, with those of the classical 
h-version finite element method, that allows complex 
geometries to be effectively captured. Compared with 
traditional low-order finite element schemes, the 
spectral/hp element method can provide an arbitrary 
order of spatial-approximation accuracy under the 
assumption of sufficient smoothness of the solution. It 
therefore combines the advantages of the low-order 
finite element method family, whilst also providing an 
additional attractive higher-precision, approximation 
for solving partial differential equations[3, 4]. Recent 
studies also indicate that the compact nature of the 
spectral/hp element method is well-placed to take 
advantage of modern multi-core and many-core 

computing hardware[5, 6]. All of the above properties 
have positioned the spectral/hp element method as an 
attractive numerical strategy for obtaining high- 
precision solutions with a relatively low computa- 
tional cost. 

The spectral/hp element method is gaining 
increasing traction in the field of CFD[3], and it has 
achieved great success in both direct and large eddy 
simulation (LES) of complex flows[7-11]. It has also 
been successfully applied to a broad range of other 
applications in various research fields, for instance, 
cardiac electro-physiology[12], solid mechanics[13, 14], 
porous media[15] and oceanographic modelling[16]. 

One of the challenges of these methods is that 
they are more challenging to implement than low- 
order methods. There are now, however, now a 
number of open-source packages which encapsulate 
the complexities of the method. One such package that 
the authors have been developing is Nektar++, a 
cross-platform spectral/hp element framework (http:// 
www.nektar.info) which has made high-order finite 
element methods more accessible to the broader com- 
munity and can be used to solve a range of the 
emerging challenges in high-fidelity scientific compu- 
tations[4]. It enables the construction of high-order dis- 
cretisations for solving a wide range of partial diffe- 
rential equations, supporting hybrid meshes, for 
example triangles and quadrilaterals or tetrahedra, 
prisms, pyramids and hexahedra. The current software 
package includes a number of pre-written scalable 
solvers, including for incompressible flow, compressi- 
ble flow, shallow water equations, acoustic perturba- 
tion equations and others. 

In this paper, we present a review of the state-of- 
the-art of the spectral/hp element method, and its 
applications. In Section 1, we briefly describe the 
spectral/hp element method and discuss the numerical 
advantages and robustness of the method in solving 
partial differential equations. In Section 2, we high 
light some of the implementation challenges of the 
method in order to achieve computational efficiency 
and discuss potential solutions through our efforts 
with Nektar++. In Section 3, we then provide a survey 
of the applications in transitional flows and waves 
(wave propagation and wave-body interaction) in 
ocean engineering to which the spectral/hp element 
method has been applied. Finally, in Section 4, we 
conclude with further discussions and some perspec- 
tives on future directions. 
 
 

1. Spectral/hp element method 
In this section, we provide an overview of the 

mathematical foundations of the spectral/hp element 
method. A more detailed derivation of the mathema- 
tical theory can be found in Ref. [3] but is beyond the 
scope of this paper. 
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1.1 Overview of method 
Spectral/hp element discretisations are the under- 

pinning approximation for both continuous and dis- 
continuous Galerkin formulations and can be con- 
structed in 1-D, 2-D and 3-D. To obtain a general 
view of the method we can consider the example in 
Fig. 1. At the bottom of this figure we observe a 
triangulation of the British Isles. In general, the com- 
putational mesh can comprise of a mix of different 
shaped elements which could be triangles and quadri- 
laterals in two dimensions, and tetrahedra, pyramids, 
prisms and hexahedra in three dimensions. Within 
each element we develop a polynomial expansion, as 
represented in the lower-right of Fig. 1, where we 
observe all of the expansion modes to represent a 
fourth-order polynomial using a modal or hierarchical 
expansion basis. For Continuous Galerkin (CG) ex- 
pansions, the design of these elements typically has 
the property of being decomposed into boundary and 
interior modes so that 0 -C continuity can be achie- 
ved by matching boundary expansion modes that have 
support on the edges of the element. The interior 
modes are necessarily defined to be zero on the 
boundaries. 
    There are a number of ways of developing the 
polynomial expansion within an element iK . In the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Illustration of the construction of a 2-D fourth-order 

0 -C continuous modal triangular expansion basis using 
a generalised tensor-product procedure 

example shown in Fig. 1 we illustrate the popular con- 
struction using a tensor product of 1-D expansions 
which are defined in the regular regions K  and K   
which can then be mapped to the physical elemental 
regions using the mapping ( )  . Tensor-based 

expansions are very popular in quadrilateral and 
hexahedral regions but require some modification for 
triangular or tetrahedral regions using a Duffy[17] or 
collapsed-coordinate system[3]. It is possible to define 
polynomial expansions that are hierarchical/modal in 
construction, much like a small-scale spectral expan- 
sion, or alternatively one can use a nodal basis where 
the expansion is defined at a specific set of points 
(often related to Gaussian quadrature) and only one 
expansion mode has a unit value, whilst all other 
expansions bases are zero, at this point. This provides 
a Kronecker delta property to the expansion which can 
be useful when evaluating non-linear products. Again, 
for triangular elements the construction of a nodal 
basis is more involved and typically requires the use 
of a generalised Vandemonde matrix to relate them to 
a known expansion which is often of a modal con- 
struction[18]. 

Once a polynomial expansion has been defined 
in each element, the approach used to “bolt together” 
these individual expansions defines the approximation 

method. For example, if one enforces a 0 -C continu- 
ous expansion by ensuring the polynomial expansion 
is continuous across elemental boundaries we obtain 
the classical CG method. Alternatively, if one does 

not directly enforce the expansions to be 0 -C
continuous but ensures appropriate flux quantities are 
continuous between elements, one can construct a 
so-called Discontinuous Galerkin (DG) scheme[3, 18, 19]. 
 
1.2 Outline of mathematical formulation 
    In general, we consider the numerical solution of 
partial differential equations (PDEs) of the form 

= 0Lu  on a domain  , which may be geometri- 
cally complex, for some solution u . Practically,   
takes the form of a d - dimensional finite element 
mesh consisting of elements Ki, embedded in a space 

of dimension d̂ , such that ˆ 3d d  , with = i iK   

and i jK K
 

is an empty set or an interface between 

elements of dimension d d . We solve the PDE 
problem in the weak sense and, in general, |

iKu must 

be smooth with at least a first-order derivative, we 
therefore require that |

iKu  is in the Sobolev space 
1, 2 1( ) ( )i iW K H K [20]. For a continuous discretisation, 

we additionally impose continuity along element 
interfaces. For illustrative purposes, we assume that it 
can be expressed as follows: 
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find 1( )u H   such that ( , ) = ( )a u v l v , 

 
1( )v H  

                                                                 

(1) 

 
where ( , )a    is a bilinear form, ( )l 

 is a linear form 

and 1( )H   is formally defined as 

 
1 2 2( ) : { ( ) | ( ), 1}H v L D u L       

          

(2) 

 
To solve this problem numerically, we consider 
solutions in a finite-dimensional subspace V    

1( )H   and cast our problem as 

 
find 1( )u H   such that ( , ) = ( ),a u v l v    

 
v V  

                                                                      

(3) 
 
augmented with appropriate boundary conditions. For 
a projection which enforces continuity across 
elements, we impose the additional constraint that 

0V C  . We assume the solution can be represented 

as ˆ( ) = ( )n nn
u x u x  , a weighted sum of N trial 

functions ( )n x  defined on   and our problem 

becomes that of finding the coefficients ˆnu . The ap- 

proximation u
 does not directly give rise to unique 

choices for the coefficients ˆnu . To achieve this, we 

place a restriction on the residual =R Lu
 that its 

2L  inner product, with respect to the test functions 
( )n x , is zero. For a Galerkin projection we choose 

the test functions to be the same as the trial functions, 
that is =n n  . As outlined previously, to construct 

the global basis n  we first consider the contribu- 

tions from each element in the domain. Each iK  is 

mapped from a standard reference space = [ 1,1]dK   
by a parametric mapping :e iK K   given by 

e= ( ) x , where K  is one of the supported region 

shapes, and   are d - dimensional coordinates rep- 

resenting positions in a reference element, distinguis- 

hing them from x  which are d̂ - dimensional coor- 
dinates in the Cartesian coordinate space. The map- 
ping need not necessarily exhibit a constant Jacobian, 
supporting deformed and curved elements through an 
isoparametric mapping. For triangular, tetrahedral, 
prismatic and pyramid elements, the Duffy trans- 
form[17] is used and operations, such as calculating 
derivatives, map the coordinate system to the non- 
collapsed coordinate system. 

    A local polynomial basis is constructed on each 
reference element with which to represent solutions. A 
one-dimensional order-P basis is a set of polynomials 

( )p  , 0 p P  , defined on the reference segment. 

The particular choice of basis is usually made based 
on its mathematical or numerical properties and may 
be modal or nodal in nature. For 2-D and 3-D regions, 
a tensorial basis may be used, where the polynomial 
space is constructed as the tensor-product of 1-D 
bases on segments, quadrilaterals or hexahedral 
regions. In particular, a common choice is to use a 
modified hierarchical Legendre basis, given as a 
function of one variable by 
 

1
( ) =

2p

  
, = 0p

                                               

(4a) 

 
1,1

1

1 1+
( ) = ( )

2 2p pP
   

  
  
  

, 0 p P 
           

(4b) 

 
1+

( ) =
2p

  , =p P
                                              

(4c) 

 
which supports the aforementioned boundary-interior 
decomposition and therefore improves numerical effi- 
ciency when solving the globally assemble dsystem. 
Equivalently, p  

could be defined by the Lagrange 

polynomials through the Gauss-Lobatto-Legendre 
quadrature points which would lead to a traditional 
spectral element method. On a physical element iK  
the discrete approximation u

 to the solution u  
may be expressed as 
 

1ˆ( ) = ([ ] ( ))n n en
u x u x   

                                        

(5) 

 
where ˆnu  are the coefficients from Eq. (1), obtained 

through projecting u  onto the discrete space. There- 
fore, we restrict our solution space to 
 

1: { ( ) ( )}
i

p iK
V u H u K  P

                               

(6) 

 
where ( )p iKP

 
is the space of order - p  polynomials 

on iK . Elemental contributions to the solution may 

be assembled to form a global solution through an 
assembly operator. In a CG setting, the assembly 
operator sums contributions from neighbouring 

elements to enforce the 
0 -C continuity requirement. 

In a DG formulation, such mappings transfer flux 
values from the element interfaces into global solution 
vector. 
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Fig. 2 Propagation of a cone initial condition using a DG 
formulation of the advection equation. After one 
rotation, we see the solution using a = 2P , = 6P  
and = 8P  order approximations 

 
1.3 What are the beneficial properties of using a 

spectral/hp element method? 
For smooth problems one of the benefits of a 

spectral/hp formulation is often quoted as the expo- 
nential rate of convergence one observes when increa- 
sing the polynomial order of the approximation, 
providing the solution has sufficient regularity. In 
practice, the good approximation properties are also 
realised in terms of the better diffusion and dispersion 
properties one observes as you increase the polyno- 
mial order. This is exemplified in Fig. 2 where we 
have taken an initial condition of a Gaussian and 
advected it under a rotational velocity field for one 
revolution. We then observe the solution of a DG 
approximation of the linear advection problem using a 

= 1P , = 3P  and = 8P  order approximation with 
128, 32 and 8 elements, respectively. We see from this 
simple test that the shape is far less diffused in the 

= 8P  problem when compared to the = 2P  discre- 
tisation, even though the overall number of degrees of 
freedom is comparable. 

Recently, a comparison between high-order flux 
reconstruction and the industrial-standard solver 
STAR-CCM+, was made, in which the accuracy and 
computational cost of flux reconstruction (FR) me- 
thods in PyFR and STAR-CCM+, for a range of test 
cases including scale-resolving simulations of turbu- 
lent flow were investigated[21]. The results from both 
PyFR and STAR-CCM+ show that third-order sche- 
mes can be more accurate than second-order schemes 
for a given cost. Moreover, advancing to higher-order 
schemes on GPUs with PyFR was found to offer even 
further accuracy vs cost benefits relative to industry- 
standard tools. These demonstrate the potential utility 
of high-order methods on GPUs for scale-resolving 
simulations of unsteady turbulent flows. 
 

1.4 Using the spectral/hp element method in margi- 
nally resolved problems 
In the previous sections, we outlined the underl- 

ying formulation of the spectral/hp element method- 
ology and we now describe some of the state-of-the- 
art developments necessary for simulating problems 
which are only marginally resolved. These tend to 
arise at higher Reynolds numbers, which generally 
promote greater levels of turbulence that cannot 
realistically be captured, even on the latest parallel 
computers. This leads to the build-up of energy in the 
larger resolved scales, due to the inability of the 
discretisation to fully capture the smaller scales of the 
flow. This is addressed with two techniques. The first 
involves performing the numerical integration of non- 
linear terms consistently. Even with this, non-linear 
interactions may still lead to an artificial build-up of 
energy in the smaller resolved scales. A second 
technique is then to apply a spectral filtering, known 
as spectral vanishing viscosity, to dampen such 
energies. 
 
1.4.1 Dealiasing 

Dealiasing strategies have been observed to be 
effective in enhancing the numerical stability when 
solving problems using the spectral/hp element 
method[22-26]. The errors are typically caused by in- 
sufficient quadrature employed in the Galerkin discre- 
tisation of nonlinear terms[3]. When the simulation is 
not sufficiently well- resolved, this leads to energy in 
the shorter length scales to be transferred back into the 
longer length scales. When simulations are well- 
resolved, the numerical errors created by insufficient 
quadrature are negligible[23, 24]. However, in margi- 
nally resolved or under-resolved simulations, aliasing 
errors may significantly pollute the solution[23]. As 
discussed in Ref. [26], there are three kinds of aliasing 
sources: 
    (1) PDE aliasing, which relates to quasi-linear 
and non-linear terms[23]. 
    (2) Geometrical aliasing, which arises due to 
deformed/curved elements. 

(3) Interface-flux aliasing, in the case of discon- 
tinuous methods[26]. 

We start by giving an example from incompressi- 
ble viscous flow past a NACA 0012 wing tip at a 

Reynolds number of 6=1.2 10Re  , originally dis- 
cussed in Ref. [26], to demonstrate the aliasing error 
in the near surface region. Figure 3 illustrates the 
dynamics of the flow by showing the iso-contours of 
helicity with a = 3P  approximation. In the boundary 
region, prismatic elements are employed while tetra- 
hedral elements are used in the rest of the domain. 
Figure 4, shows the first two kinds of aliasing errors. 
In Fig. 4(a), 30% aliasing error with respect to the  
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magnitude of the nonlinear terms is observed and in 
Fig. 4(b) we show a close up of regions with high 
geometrical aliasing error near the wing surface where 
600% error is observed. The aliasing errors in this 
numerical calculation significantly pollute the solution 
and cause it to very rapidly become numerically 
unstable. 
 
 
 
 
 
 
 
Fig. 3 Helicity for an incompressible viscous flow over a 

NACA 0012 wing[26] 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 PDE aliasing errors at 30% of the magnitude of the 

nonlinear terms (a) and close up regions near the wing 
surface showing geometric aliasing errors (b)[26] 

 
    We can categorise dealiasing techniques into two 
strategies: 
    (1) Local dealiasing: PDE-dealiasing through 
consistent integration of the nonlinear terms only[23, 26]. 
    (2) Global dealiasing: PDE- and geometrical- 
dealiasing through consistent integration of all the 
terms of the discretisation[26]. 

The phrase consistent integration refers to poly- 
nomial nonlinearities, where it is effectively possible 
to know a priori the number of quadrature points 
necessary for the integration to be exact[23, 27]. There- 
fore, the non-linearities can be consistently integrated. 
For non-polynomial functions, as typically arise in the 
Euler equations, the concept of consistent integration 
is not well defined since it is impossible to fully 
control the quadrature error. We refer to the reader to 
Ref. [26] for a more complete discussion of these 
strategies as well as a discussion of interface aliasing. 
 
1.4.2 Spectral vanishing viscosity 

As previously discussed, it is well known that 
spectral/hp element discretisations generally lead to 
approximations that have low dissipation and low 
dispersion[3] per degree of freedom when compared to 
lower-order methods. In solving advection-diffusion 

equations and nonlinear partial differential equations 
such as advection-dominated flows, at marginal reso- 
lutions, oscillations appear that may render the com- 
putation unstable[3]. Artificial viscosity has been used 
in may discretisation methods to suppress wiggles 
associated with high wavenumbers, for example 
hyperviscosity has been broadly and effectively used 
in simulations using the Fourier method. A related 
concept is the so-called spectral vanishing viscosity 
(SVV), which was originally proposed based on a 
second-order diffusion (convolution) operator for 
spectral Fourier methods[28]. The SVV concept was 
originally motivated through the inviscid Burgers 
equation where an additional diffusion term was 
added, i.e. 
 

2 ( , ) ( , )
( , ) + =

2

u x t u x t
u x t D

t x x x
     
                    

(7) 

 
where ( 0)   is a viscosity amplitude and D  is a 

viscosity kernel, which may be nonlinear, can be a 
function of x and is only activated for high wave 
numbers. With a small amount of controlled dissipa- 
tion, spectral accuracy can be retained. This approach 
was extended to the Navier-Stokes equations by 
Karamanos and Karniadakis[29] and Kirby and 
Sherwin[30] and has also been investigated and applied 
to large eddy simulation by Pasquetti[31, 32]. 
    To provide some intuition about the influence of 
SVV, we show in Fig. 5 an example from Ref. [30] of 
applying SVV to the parabolic equation 
 

2= + ( )VV

u
u S u

t




                                                    

(8) 

 

on = [0,2] [0,2]   with 5= 10  and periodic boun- 

dary conditions. The initial condition is given by 

( , , = 0) = sin( )sin( )u x y t x y  , in which a perturba- 

tion is introduced. A total of sixteen quadrilateral 
elements (four per direction) with 15th order polyno- 
mials per element direction were used. The following 
“classical” 1-D SVV kernel is employed, 
 

= 0D , cutp P
                                                         

(9a) 

 
2

2
cut

( )
= exp

( )

p P
D

p P

 
  

, cutp P
                            

(9b) 

 
where P  is the total number of modes employed and 

cutP  is the cutoff polynomial order. SVV with the 

kernel function D  can be regarded as a low-pass 
filter. We see that the SVV dissipation added to the 
high mode numbers with respect to the spectral 
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element discretisation does indeed yield dissipation at 
the global high wavenumber scales of the solution in 
Fig. 5. 
 
 
 
 
 
 
 
 
 

Fig. 5 A demonstration of stabilisation by SVV: (a) Standard 
diffusion at = 0.1t , (b) Standard diffusion with 

cut = 7P , = 0.1 , (c) Standard diffusion with cut = 3P , 

= 0.1 [30] 
 
    In applications, Karamanos and Karniadakis 
applied SVV to high Reynolds number turbulent flows 
and the method was viewed as an alternative LES 
approach[29]. Kirby and Karniadakis computed the 
artificial viscosity by incorporating the local strain and 
the Panton function and the methodology was called 
SVV-LES[33]. The SVV approach has been reasonably 
widely used to simulate turbulent flow and vortical 
flows[7, 30-36]. SVV has been explicitly regarded as a 
turbulent model of implementing implicit large eddy 
simulation (iLES) under the assumption “The action 
of subgrid scales on the resolved scales is equivalent 
to strictly dissipative action” [37], even though SVV is 
not explicitly designed as a subgrid-scale model. 

Recently, in order to achieve a better perfor- 
mance of SVV, the linear advection equation augmen- 
ted with SVV has been analysed[38]. Dispersion and 
diffusion characteristics of the spectral/hp CG formu- 
lation with SVV-based stabilization are verified to 
display similar non-smooth features in flow regions 
where convection is much stronger than dissipation or 
vice-versa, owing to a dependency of the standard 
SVV operator on a local Péclet number = /Pe ah   
where a is the advection speed, h is the mesh spacing 
and   is the base SVV magnitude[38]. A modification 
was proposed[38] to the traditional SVV scaling, which 
enforces a globally constant Péclet number. In this 
approach, the artificial dissipation strength parameter
 is defined by = 0 /ch P , where   is a globally 

fixed parameter used to adjust the dissipation strength, 
P  would be the polynomial order used in each 
element and c  is a measure of the advection velocity 
magnitude on each local element. Furthermore, the 
following “power” kernel function is proposed[38] 
 

SVV

=
P

p
D

P
 
 
                                                              

(10) 

 

where p  denotes mode index and SVVP  is now not 

an activation threshold, but a similar effect in terms of 
computing the viscous effects on the highest modes. 
The mesh Péclet number is now held constant globally. 
In addition, the “power kernel” function has been 
devised for the advocated SVV operator to provide a 
consistent increase in resolution power (per degree of 
freedom) when the polynomial order is increased–a 
feature not naturally achieved through the widely used 
“exponential kernel” introduced in Ref. [39]. 

In turbulence simulations using DG methods, 
there were early discussions[40, 41], highlighting that 
the scheme successfully predicted low-order statistics 
with fewer degrees of freedom (DoFs) than traditional 
numerical methods. More extensive assessments[42, 43] 
indicated that DG can predict high-order statistics 
with accuracy comparable to that of spectral methods 
for an equivalent number of DoFs. However, there is 
still little understanding of why and how one can use 
the spectral/hp element method for under-resolved 
turbulence simulations when either spectral vanishing 
viscosity (as sometime employed in CG methods) or 
upwind fluxes (as naturally arise in DG methods) are 
used to provide dissipation at under-resolved scales. 
Recently, exploratory studies, focusing on the DG 
formulation, were undertaken to address how numerical 
dissipation affects the under-resolved scales[44, 90]. By 
exploring DG’s propagation characteristics directly 
from the dispersion-diffusion curves of a linear 
advection problem, a simple criterion (named “the 1% 
rule”) was proposed to estimate the effective resolu- 
tion of the DG scheme for a given hp approximation 
space. 

Numerical experiments on Burger turbulence 
helped to clarify why the DG formulation can be 
suitable for under-resolved simulations of turbulence: 
the numerical discretisation is capable of resolving 
scales up to 1% with good accuracy while dissipation 

is provided at the end of the energy spectrum in the 
form of numerical diffusion. A further study for 
improving SVV by the “1% rule” was conducted with 
a new SVV kernel function[38]. The “1% rule” enables 
the SVV to mimic the property of the DG method 
with upwind numerical fluxes. A CG formulation 
based on the suggested SVV operator and kernel 
function was investigated. Being able to emulate the 
upwind properties of a DG scheme within a CG 
approximation using SVV appears to have relatively 
robust properties which are attractive for the 
marginally resolved simulations and this approach is 
referred to as a “DGKernel” SVV within the Nektar++ 
framework discussed in the next section. 
 
 
2. Implementation of spectral/hp element method 

One of the challenges of enabling the spectral/hp 
element method to become more pervasive for indu- 
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strial and environmental problems is the implementa- 
tional complexity of the methods. One of the overarc- 
hing aims of the Nektar++ project is to provide an 
efficient framework upon which a broad range of 
physical processes can be modelled using these appro- 
aches. With this in mind, we outline some of effi- 
ciency challenges associated with implementing these 
methods for practical use and detail some suitable 
solutions in the context of Nektar++. 
 
2.1 Nektar++ overview 

The design of Nektar++ is intended to mirror the 
mathematical formulation of the spectral/hp element 
method, from one-dimensional basis functions up to 
multi-dimensional, multi-element discretisations of 
complex geometries. The package consists of a tiered 
collection of libraries which implement different 
aspects of the formulation, as illustrated in Fig. 6. On 
top of this, domain-specific application solvers can be 
readily developed which specify the physical pro- 
cesses to be modelled, while leveraging the imple- 
mentation of the discretisation provided by the libra- 
ries in a relatively transparent manner. 

At the lowest level the LibUtilities implements 
1-D bases of orthogonal polynomials which are used 
to construct the expansion bases on individual 
elements. Their analytical derivatives and the 
distributions of points used for performing Gaussian 
quadrature are also captured. On top of this, the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reference elements are defined for tessellating 1-D, 
2-D and 3-D domains in the StdRegions library. 
Nektar++ supports a range of elemental regions to 
enable maximum flexibility in defining meshes which 
can effectively capture complex geometries, including 
segments in 1-D, quadrilaterals and triangles in 2-D, 
and hexahedra, prisms, pyramids and tetrahedra in 
3-D. For multi-dimensional regions expansion bases 
may be defined using natively 2-D bases (e.g., 
Lagrange polynomials at Fekete points), or though a 
tensor-product construction of 1-D polynomials. For 
each of these regions, core finite element operators, 
including backward transform, inner product and 
derivative operators are defined. 

Constituent elements of the computational mesh 
are represented in the LocalRegions library through a 
mapping from the reference region to the physical 
coordinates of the element. These mappings are cap- 
tured in the SpatialDomains library and can capture 
high-order geometric curvature in the element. These 
geometric factors are used to extend the finite element 
operators defined for the standard reference regions to 
the physical elements. The MultiRegions library 
encapsulates the construction of multi-element global 
expansions through the construction of assembly 
operators which identify corresponding degrees of 
freedom in the local and global representations. 
Through this mapping, global finite element operators 
are constructed. Global linear systems can then be  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  
 
 

Fig. 6 Diagrammatic representation of the libraries in Nektar++[4]
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solved using a number of direct and iterative linear 
algebra techniques. Iterative approaches, such as the 
preconditioned conjugate gradient method, solve a 
system through the repeated action of the operator, 
providing scope for a range of performance optimisa- 
tions, discussed in Section 2.3. 

While the central concept captured in Nektar++ 
are high-order spectral/hp element spatial discretisa- 
tions, high-order time integration algorithms are also 
implemented to allow for highly accurate transient 
simulations. These include fully explicit, implicit and 
mixed implicit-explicit (IMEX) schemes. 
 
2.2 Combined spectral/hp-Fourier discretisation 

While the spectral/hp element method exhibits 
some of the numerical characteristics of a pure 
spectral method, the use of the latter is still preferred 
in the case of regular geometries such as rectangles 
and cuboidal domains. This situation occurs widely in 
many, particularly fundamental, hydrodynamics pro- 
blems. In Nektar++, we leverage this by allowing for a 
mixed spectral/hp-Fourier discretisation. In this confi- 
guration, geometrically homogeneous coordinate di- 
rections are represented with a truncated Fourier 
expansion, while coordinate directions with geometric 
complexity use the spectral/hp element discretisation. 
This has the effect of decoupling the individual 
Fourier modes, allowing the spectral/hp operator to be 
applied independently within each component of each 
Fourier mode. 
    The Fourier decomposition also enables parallel 
decomposition of the modes to different processes[45]. 
Combined with the parallelisation of the spectral/hp 
element discretisation this leads to a hybrid paralle- 
lism. An open challenge here is identifying the 
optimal parallelisation of such mixed-discretisation 
domains to achieve optimal performance. 

The GlobalMappings library further extends this 
discretisation strategy by supporting geometries in 
which a coordinate direction can be transformed to a 
homogeneous representation by an analytical function. 
This enables more complex geometries to be discre- 
tised using this efficient formulation. 
 
2.3 From h  to p  efficiently 

One of the challenges in implementing the 
spectral/hp method is achieving computational perfor- 
mance across a broad range of polynomial orders. The 
classic approach to implementing linear finite element 
operators is to assemble the global form of the 
operator and act directly on the global degrees of 
freedom. This is performant since each mesh vertex 
has a high valency and the assembly operation 
dramatically reduces the size of the global linear 
system used within the iterative solver. With increa- 
sing polynomial order, this reduction is less and the 

memory indirection associated with the global 
operator leads to reduced through-put and degraded 
performance. 

A number of studies[46-49] have concluded that for 
higher polynomial orders, one should instead scatter 
the global degrees of freedom back onto their local 
elemental representation and perform the action of the 
operator in an element-wise fashion using a matrix- 
vector operation. This enables a more compact repre- 
sentation of the operator in memory, greater cache- 
locality in applying the operator and a reduction in 
overall memory usage. At very high polynomial 
orders, the size of the local operator grows as 

40( )P . 

A more efficient approach in these cases is to take 
advantage of the tensor-product construction of the 
operators to decompose the elemental operator into a 
sequence of 1-D operators, known as sum-factorisa- 
tion. Algebraically, this corresponds to a sequence of 
matrix-matrix operations which, besides the reduction 
in floating operation count, can be generally more 
efficiently implemented. 

Recalling the construction of the local elemental 
operators as the reference region operator, transfor- 
med under a geometric mapping, one can exploit the 
decomposition of the elemental operators into these 
constituent parts. The Collections library in Nektar++ 
exploits this decomposition on groups of similar 
elements (same shape and expansion basis) by 
applying first the geometric factors associated with the 
operator, before acting with the reference region 
operator on all of the elements in the group simul- 
taneously[50]. This effectively replaces a sequence of 
matrix-vector operations with a single matrix-matrix 
operation, reducing data movement and improving 
floating-point performance. This decomposition can 
be applied both to the local elemental matrix repre- 
sentation as well as the sum-factorisation approach. 
 
2.4 High-order mesh generation 

For complex 3-D geometries, the generation of 
high-order curved meshes along solid surfaces is a 
challenging topic[51-55]. Approaches for generating 
unstructured high-order meshes, extending coarse 
linear grids to incorporate high-order curvature, are a  
 
 
 
 
 
 
 
 
 
 

Fig. 7 Splitting a reference prismatic element and applying the 
mapping to obtain a high-order layer of prisms from the 
macro-element[51] 
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Fig. 8 Surface mesh of a NACA 0012 wing geometry at 
polynomial order = 5P . The coarse prismatic boun- 
dary layer is highlighted in blue (a) and the refined 
boundary layer which uses three layers and a 
progression ratio = 3r (b)[51] 

 
 
 
 
 
 
 
 
 
 

Fig. 9(a) Turbulent channel flow 
 
 
 
 
 
 
 
 
 
 

Fig. 9(b) Turbulent pipe flow 
 
relatively new development[52, 56, 57]. The main chal- 
lenge is robustness, since near-wall curvature must be 
introduced in such a way as to prevent the generation 
of self-intersecting elements[51]. Recently, several 
methods have been proposed to cope with high-order 
curvilinear boundary layer meshing, namely (1) the 
isoparametric approach[51], (2) the variational ap- 
proach[53], and (3) the thermo-elastic analogy[54]. In 
the isoparametric approach, a reference element is 
mapped to a physical element with the supplied 
curvature information. The generation of a boundary 
layer mesh is achieved by splitting the reference 
element along the wall normal coordinate and then 
applying the mapping from a reference element to a 
physical element yielding the desired boundary layer 
mesh as illustrated in Fig. 7. In Fig. 8, a mesh for the 
NACA0012 aerofoil profile is shown which is 
generated by the isoparametric approach[51]. In the 
variational approach, a functional which defines a 
measure of energy over mesh and takes the mesh 
displacement and its derivatives as its arguments, is 

minimised using a nonlinear optimisation strategy[53]. 
It is demonstrated that the variational framework is 
efficient for both mesh quality optimisation and 
untangling of invalid meshes. In order to circumvent 
the drawback of elastic-model based methods which 
are used to tackle element self-intersection, a thermo- 
elastic analogy, as an extension of the elastic formu- 
lation, is proposed to “heat” or “cool” elements. The 
thermo-elastic formulation leads to an additional 
degree of robustness, which shows the potential to 
significantly improve meshing[54]. NekMesh, which is 
a mesh generation and manipulation utility bundled 
with Nektar++, supports these strategies for high- 
order mesh generation. 
 
 
3. Applications 

In this section, we illustrate some typical appli- 
cations of spectral/hp element methods in fluid me- 
chanics, typically in hydrodynamics. Some examples 
will be given through use of the pre-written solvers in 
Nektar++. 
 
3.1 The incompressible Navier-Stokes equations 
    We first introduce the incompressible Navier- 
Stokes equations on a bounded domain   which 
allows one to solve the governing equations for 
viscous Newtonian fluids governed by 
 

2+ = +p
t


  


u

u u u  
                                    

(11a) 

 
= 0 u

                                                                   

(11b) 
 
with appropriate boundary conditions. In Nektar++, a 
velocity correction scheme is employed, which uses a 
splitting/projection method where the velocity and the 
pressure are decoupled[58]. In the original approach, a 
stiffly stable time integration scheme was proposed. 
Briefly, high-order splitting schemes comprise of 
three steps involving explicit evaluation of the 
non-linear terms, followed by the implicit solution of 
the pressure Poisson system and finally solving a 
series of Helmholtz problems to enforce the viscous 
terms and velocity boundary conditions. Time integra- 
tion is handled using a generic time-stepping frame- 
work, utilising one of a number of implicit-explicit 
(IMEX) time-integration schemes, the details of which 
can be found in Ref. [59]. 
 
3.2 Transitional flows 

In the past few decades, the spectral/hp element 
method has been applied to laminar and transitional 
flows[58, 60-64]. As discussed earlier, the advantages of 
the spectral/hp element method are its low numerical 
dissipation and dispersion errors, which allow indivi- 
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dual flow structures to be accurately captured over 
long time periods. Combined with the development of 
effective stabilisation techniques (e.g., SVV or filter- 
based stabilisation[65]), the spectral/hp element method 
has in most recent years proved effective in modelling 
turbulent flow[33, 66-70]. 

Transitional problems are those in which turbu- 
lence dominates the flow domain, or in which the 
transition to turbulence is a fundamental aspect of the 
simulation. Here we provide a survey of the range of 
studies undertaken using the spectral/hp element 
method in relation to transitional flows, focusing on (1) 
turbulence, (2) separated flows, (3) hydrodynamic 
stability, and (4) vortical flows and high Reynolds 
number wingtip vortices. 
 
3.2.1 Turbulent flows 

As noted in Ref. [4], highly resolved turbulent 
simulations were traditionally undertaken using spec- 
tral methods, imposing strong geometrical restrictions. 
Spectral/hp element methods alleviate this constraint 
although, as discussed in Section 2, when the domain 
of interest has a geometrically homogeneous direction, 
a combination of the spectral/hp element method and 
the traditional spectral method is still particularly 
advantageous[45, 71]. 
     A benchmark simulation of turbulent flow over 
a periodic hill has been performed using Nektar++. It 
is challenging to resolve accurately due to the detach- 
ment of the fluid from the smooth surface and the 
generation of a recirculation region downstream of the 
hill[4]. A 2-D mesh of 3 626 quadrilateral elements 
with = 6P  in the streamwise direction was construc- 
ted, and a Fourier pseudo-spectral method with 160 
collocation points in the spanwise direction was 
employed to perform the simulation at a Reynolds 
number 2 800. Excellent agreement with the bench- 
mark statistics was obtained. With the quasi-3D solver, 
turbulent channel and pipe flows have also been 
accurately simulated and validated[45], these are 
illustrated in Fig. 9 and are used as benchmark cases 
in Nektar++.  

Recently, a global mapping technique has been 
developed which allows the simulation of fluid flows 
with geometrically periodic variation along homoge- 
neous directions[8, 11]. A typical example is to simulate 
turbulent flows induced by a localised surface defor- 
mation in the boundary layer[11]. The computational 
domain is illustrated in Fig. 10(a) and the turbulent 
flow which forms downstream of the surface 
deformation is shown in Fig. 10(b). The freestream 
unit Reynolds number is 1.2106

 and the reference 
free-stream velocity is 18m/s. The laminar-turbulent 
transition is initialised by the nonlinear process of 
upstream Tollmien-Schlichting (TS) disturbance 
breakdown to turbulence downstream of the surface 

indentation. The disturbance is generated by a 
disturbance strip as illustrated in Fig. 10(a), which has 
a vibration frequency of 172 Hz and is used to mimic 
the TS disturbance by the receptivity mechanism. The 
numerical calculations of this case are validated with 
an experimental study for which excellent agreement 
is obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 An illustration of the computational domain for the 
turbulent simulation in a boundary layer (a) and 
laminar-turbulent transition triggered by TS instability 
in a boundary layer. The iso-surfaces indicate the 
different pressure levels[11] 

 
3.2.2 Separated flows 

Flow separation can be one of the most important 
topics in fluid mechanics, due to its relevance to 
aerodynamic performance in many engineering appli- 
cations. There are typically two kinds of separations: 
geometrical, where the flow separates from a sharp 
obstacle in the flow, and pressure-induced, depending 
on the pressure gradient over a smooth surface. For 
both kinds of separation, the spectral/hp element 
method has been used to accurately capture detach- 
ment and reattachment points, e.g., laminar flow in a 
channel expansion[72], turbulent separation in a 3-D 
diffuser[25], the flow around a wall-mounted square 
cylinder[73], flows over periodic hills[74], small separa- 
tion bubbles induced by localised imperfections[11, 75]. 
Practically, the studies of separated flows are always 
accompanied by turbulent flows due to the occurrence 
of sensitive instabilities induced by the geometrical 
discontinuity. 

Recently, with the global mapping technique, 
direct numerical simulations of the flow around wings 
with spanwise waviness were investigated to explore 
its effect on the wing performance[9, 76]. The geome- 
tries are based on a NACA0012 profile with a small 
modification to obtain zero-thickness trailing edge to 
overcome meshing challenges. The wavy geometries 
were obtained by applying the following coordinate 
transformation to the straight infinite wing 
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Fig. 11 The geometry of a wavy wing with / = 0.1h c  and 

/ = 0.5d [9] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Flow properties around the wing with an attack angle 
o12 , / = 0.1h c  and / = 0.5d [9] 

 
where h  is the waviness peak-to-peak amplitude,   
is its wavelength, x  is the physical coordinate in the 
cord direction, and x  and z  are the chordwise and 
spanwise coordinates in the computational domain in 
Fig. 11. At a very low Reynolds number 1 000, for 
moderate angles of attack, the waviness leads to 
decreases in both drag and lift forces, which lead to a 
decrease in the lift-to-drag ratio and a suppression of 
the fluctuating lift coefficient[9]. The physical mecha- 
nism behind these were explained. In Fig. 12(a), the 
recirculation regions are shown and the visualisation 
was made considering the regions where streamwise 
velocity is negative. In Fig. 12(b), the coloured con- 
tours represent spanwise velocity at the plane =x

0.33 , which is close to the location of the leading 
edge in the peak of the waviness at = 0.05x  , 
depicting how the flow moves away from the 
waviness peak in the lower portion of the wing and it 
moves towards it in the upper part. A further study 
was undertaken at Reynolds numbers 10 000 and 
50 000 for different attack angles through highly 
resolved direct numerical simulations[76], which pro- 
vides a better understanding of wing performance with 
the use of spanwise waviness. 
 
3.2.3 Hydrodynamic stability 

In addition to solving the fully non-linear in- 
compressible Navier-Stokes equations in Nektar++, 
the solution of the linearised incompressible Navier- 
Stokes equations is also supported to enable global 
flow stability analyses to be performed with respect to 
a steady or a time-periodic base flow. This process 
identifies whether such flows are susceptible to a 
fundamental change of state when an infinitesimal 
disturbance is introduction. The linearised incompres- 
sible Navier-Stokes equations take the following form 
 

2+ +  = + +p f
t


      


u

U u u U u , 

 
= 0 u

                                                                    

(13) 
 
where u  is the perturbation and U  denotes the 
base flow or a time-dependent periodic flow which are 
sampled at regular intervals and interpolated. For 
stability analysis, suitable boundary conditions should 
be imposed. The linear evolution of a perturbation 
under Eq. (13) can be expressed as 
 

= A( ) ( )t t
t

 

u

u
                                                          

(14) 

 
with an initial condition (0)u . If the base flow U  

is steady, the perturbation ( )tu  be expressed by 

eigenmode solutions of ( )A t  as follows 
 

( ) = exp( ) +c.c.j jt tu u
                                             

(15) 
 

The dominant eigenvalues and eigenmodes of the 
operator ( )A t  are defined by solutions to the follo- 

wing equation 
 

( ) =j j jA t  u u
                                                            

(16) 

 

The leading eigenvalue j  is used to detect the 

global stability of the flow. Using a similar approach, 
the operator ( )A t

 for the adjoint form of the lineari- 

 

 



 

 
 

13

sed Navier-Stokes evolution operator can be used to 
examine the receptivity of the flow and, in com- 
bination with the direct mode, identify the sensitivity 
to base flow modification and local feedback. The 
direct and adjoint methods can be combined to 
explore convective instabilities over different time 
horizons   in a flow by computing the leading 

eigenmodes of ( )( )A A   known as transient growth 

analysis. The eigenvalues and eigenmodes of ( )A   
and ( )( )A A 

 can be solved directly if the dimen- 

sions of the matrices are small. Practically, time- 
stepper-based methodologies, based on Arnoldi itera- 
tion methods[77], can be more efficient for complex 
problems[78-81] than direct calculation of the eigenva- 
lue spectrum from the linearised Navier-Stokes 
operator. 
    To illustrate the direct stability analysis with a 
classic example, we calculated the dominant mode of 
the two-dimensional flow past a circular cylinder at 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 Direct stability analysis of 2-D flow past a circular 

cylinder at = 50Re  
 

= 50Re . We show the two components of the base 
flow in Figs. 13 (a) and 13(b) and the two components 
of the dominant direct mode in Figs. 13 (c) and 13 (d). 
The leading eigenmode is characterised by the asym- 
metry in the streamwise component and symmetry in 
the cross-stream component. We also observe the 

spatial distribution of the modes, with the leading 
direct modes extending far downstream of the cylinder. 
Recently, instability methods using the spectral/hp 
element method have been employed for investigating 
the stability of vortical flows and controlling wakes of 
flows past bluff bodies[82-84]. With the linearised 
Navier-Stokes equations, the interaction between 
instability waves and surface distortion in a 2-D and 
3-D boundary layer have been precisely investi- 
gated[10, 11, 75]. 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Tip vortex of an elliptic hydrofoil 
 
3.2.4 Vortical flows and wingtip vortex 

Simulating and understanding vortical flows are 
vital in hydrodynamics and aerodynamics. In many 
applications, manipulation of vortices in the vicinity 
of flow boundaries is crucial for improving perfor- 
mance in engineering practice[7, 85-89]. Developing a 
better understanding of the near wake of the vortex, 
lying within one chord length of the trailing edge, is 
essential in understanding the complex flow structure 
interactions[7], which is also crucial in understanding 
cavitation in vortical structures generated by hydro 
propellers[86]. Computationally, in high Reynolds 
number flows, accurate numerical simulations of these 
kinds of vortical structures are challenging for the 
traditional numerical methods due to numerical 
dissipation. A recent study in which wingtip vortices 
were simulated demonstrated that the adjustable and 
controllable low-dissipation properties of the spectral/ 
hp element method were beneficial for modelling and 
simulating vortical flows[7, 44, 90]. 

To illustrate the ability of the spectral/hp element 
method to accurately capture vortical flows at a 
Reynolds number 1.2106, a rectangular wing with a 
NACA0012 profile, is investigated with a rounded 
wing cap (consequently, a longer semispan where the 
wing is thickest) and a blunt trailing edge[7]. The 
results showed better correlation with experimental 
results than previous numerical results, both in terms 
of the static pressure distribution, prediction of the 
jetting velocity, vortex spanwise location, and the 
ability to resolve the secondary vortex interaction with 
the main wingtip vortex. The iLES method based on 
SVV has been shown to be a compelling alternative 
for computing complex vortex-dominated flows, such 
as the wingtip vortex, motivating its use for complex 
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industrially relevant cases where high-fidelity compu- 
tational fluid dynamics can become an enabling tech- 
nology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 Vorticity components x , y
 
and z  directions at 

the section / = 1.06x c  
 

Built on the confidence of simulating the 
NACA0012 wingtip vortex, recently, an initial simu- 
lation with a Reynolds number 1.217106

 is currently 
being conducted to simulate the tip vortex of an 
elliptic hydrofoil where the incident flow attack angle 
is o7 . The tip vortex structure is illustrated by the 
iso-surfaces of the total pressure in Fig. 14. The 
contour figures of the vorticity components are shown 
at the section / = 1.06x c  in Fig. 15 and the origin is 
located at the tip of the hydrofoil. In Fig. 15(a), the 
vortex core is shown in axial vorticity x  and 

tangential and spanwise vorticity components ( y
 

and z ) are shown in dipoles in Figs. 15(b) and 15(c). 

This calculation will be used to provide vortex core 
pressure for studying cavitation in a vortex structure. 
The numerical results will be going to be compared 
with experimental data. 
 
3.3 Waves in ocean engineering 
    This section is devoted to outlining recent 
progress in spectral/hp element modelling of wave 
propagation and wave-body interaction. For water 
waves propagation, the fully nonlinear potential flow 
(FNPF) equations is the fundamental governing 
equation and can be derived from the Navier-Stokes 
equations by assuming inviscid and irrotational flow. 
One of the main challenges in the last decade have 
focused on use of spectral/hp element methods for 
coastal engineering[91], and the development of robust 
and efficient solvers with support for unstructured 
meshes to capture realistic shore lines, geometric 
features, and adapt meshes to relevant features of the 
solution[92]. 
 
3.3.1 Fully nonlinear potential flow 

Finite elements are widely used for solving the 
FNPF equations[93-96], but the use of spectral/hp 
elements remains scarse. The first attempt to solve the 
FNPF equations using spectral/hp elements is due to 
Robertson and Sherwin[97] using an arbitrary 
Lagrangian Eulerian (ALE) approach for the free 
water surface in a 2-D setting. Solving the FNPF 
equations is non-trivial, due to the need to evolve a set 
of highly nonlinear free surface boundary conditions 
in a robust way, together with the efficiency solution 
of a Laplace problems-possibly-in large ocean areas. 
For spectral/hp element models, Robertson and 
Sherwin identified a mesh asymmetry problem asso- 
ciated with triangulation of the fluid domain, which 
gives rise to real-valued eigenvalues and thus repre- 
sented a severe instability problem. This was handled 
by adding a diffusive term in the kinematic free 
surface boundary condition proportional to the mesh 
asymmetry, but at the cost of reduced convergence 
rates. The problem of mesh asymmetry which dest- 
roys the dispersion relation was circumvented by 
Engsig-Karup et al.[98, 99] by solving the FNPF equa- 
tions in a - transformed domain[94] using a single 
layer of quadrilaterals in 2-D and prisms in 3-D. The 
FNPF model was shown to exhibit exponential con- 
vergence even for steep nonlinear stream function 
waves which most simpler wave models cannot 
handle. To stabilise the nonlinear simulations, it was 
found that the quartic nonlinear terms in the free 
surface equation need to be integrated exactly and for 
the steep waves a mild (1%) modal filter could be 
used to remove high frequency noise that can stem 
from aliasing in nonlinear terms for marginal reso- 
lution, and the gradient recovery steps that reconstruct  
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the gradients of the solution (e.g., velocities) from the 
0C  approximations. 

Letting   denote the horizontal gradient opera- 
tor, the velocity potential   satisfy the Laplace equa- 

tion 
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+ = 0

z

 



                                                            

(17) 

 
with time-dependent free surface boundary conditions 
on =z 

 
given in the Zakahrov[100] 
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and zero normal flow on the bottom =z h   and on 

structures b  
 

= 0
n




                                                                       

(20) 

 

Here   is the free surface elevation, w  the vertical 

velocity, h  the still water depth and g the accelera- 
tion of gravity. The σ-transformed FNPF solver as 
presented in Ref. [99] has been implemented in the 
Nektar++ framework in order to allow for larger-scale 
modelling[101]. The solution is advanced explicitly in 
time by solving the free-surface equations. The 
computed +1n  are used as Dirichlet condition for the 

Laplace equation at =z  . After solving for the 

velocity potential, +1nw  is obtained by a 0C  gra- 

dient recovery as +1nw  is needed to advance the free 
surface conditions another time step. Explicit time- 
stepping schemes are effective for FNPF as the time- 
step restriction is not dependent on the horisontal 
mesh size, but only on the vertical resolution and 
water depth[98]. A σ-transformed FNPF solver is well- 
suited for large-scale wave propagation simulations, 
since re-meshing is avoided. Also, an intrinsic pro- 
perty of FNPF solvers is the ability to get accurate 
kinematics in all of the fluid domain as a part of the 
solutions, which is relevant for wave-induced load 
predictions on marine structures. The - transformed 
FNPF solver can be used for computing e.g., short- 
wave disturbances in ports, see Fig. 16, and wave 
scattering from bottom mounted vertical cylinders, see 
Fig. 17. 

The use of - transformed domains excludes 
any truncated bodies in the domain. In order to handle 

 
 
 
 
 
 
 

 
Fig. 16 Snap shot of free surface elevation in the Port of Visby 

using fifth order method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17 Wave scattering of regular waves by a cylinder. Wave 

propagating from (a) to (b) 
 
arbitrarily shaped bodies in the domain the mixed- 
Eulerian-Lagrangian (MEL) approach should be used 
and there are ongoing efforts to implement a SEM 
based on the MEL approach. In Ref. [102] a work- 
around on the mesh asymmetry problem associated 
with the MEL was presented. By using hybrid meshes 
consisting of a single layer of vertically aligned quads 
(in 2-D) at the free surface, the eigenvalues were 
shown to be purely imaginary for any triangulation of 
the inner field. When using higher-order local 
polynomial expansions as done in the spectral/hp 
element method, a local re-meshing (movement of 
quadrature points inside the local elements) as well as 
global re-meshing (movement of vertices) are needed 
in the MEL approach. An example of a spectral/hp 
element simulation using MEL for wave-body 
interaction are illustrated in Fig. 18. Here a solitary 
wave is passing over a horizontal submerged cylinder. 
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Fig. 18 Solitary wave passing a submerged horizontal  

cylinder[102] 
 
3.3.2 Shallow water wave equations 

While the application of spectral/hp element 
method for FNPF equations is emerging, in the field 
of depth-integrated shallow water long wave equa- 
tions there is a wider use of spectral/hp elements 
methods. These equations can be derived from the 
FNPF equations by expanding the velocity potential in 
terms of the vertical coordinate and integrating the 
Laplace problem over the fluid depth. This removes 
the vertical dependence of the problem. Non-hydro- 
static wave equations (such as Boussinesq-, Serre- or 
Green-Naghdi-type equations) are used for wave pro- 
pagation and transformation in nearshore regions. The 
dispersive effects are included in the equations 
through higher-order mixed and spatial derivatives. 

Eskilsson and Sherwin presented the first spectral/hp 
model for 1-D Boussinesq-type equa- tions[103], and 
later in 2-D[104]. In the latter study was illustrated that 
the use of high-order schemes is computationally 
efficient compared to low-order methods for long- 
time integration. This is general knowledge, mathema- 
tically proven in Ref. [105], but the importance is 
accenturated in wave equation where the numerical 
dispersion error must be kept small compared to the 
physical dispersion terms. Additional spectral/hp 
studies of weakly dispersive Boussinesq equations are 
Refs. [106, 107]. Engsig-Karup et al.[108-110] solved a 
set highly dispersive and nonlinear Boussinesq-type 
equations. More recently the interest has turned 
toward Green-Naghdi type equations due to their 
description of nonlinearity and a number of 
spectral/hp element methods have been put for- 
ward[111-113]. We note that all the above models are 
based on high-order DG methods. 

The classical Boussinesq equations due to Pere- 
grine[114] read 
 

+ [( + ) ] = 0h u
t
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where u  is the horizontal velocity. There exists a 
pre-written solver for the Peregrine equations in 
Nektar++. The equations are solved in terms of 
conservative variables and the solution scheme is 
using the wave-continuity step as introduced in Ref. 
[104]. First the advection part is approximated and 
used in an intermediate step. In the intermediate step 
the dispersive terms are reformulated into a Helmholtz 
equation in terms of the auxiliary variable =q

(d )t u  , in which = +d h  . Subsequently, a pro- 

jection back to conservative variables is performed. 
The Boussinesq equations can be used for computing 
the generation of higher harmonics. A classical 
example is the semi-circular shoal case, see Fig. 19. 

With regard to non-dispersive, hydrostatic wave 
equations the shallow water equations (SWE) are 
typically used in marine applications to predict tidal 
forcing but can also be used for other long wave 
phenomena such as tsunami and storm-surge predic- 
tions. For tsunami modelling hp-adaptive DG models 
have been presented in order to resolve the shock 
wave propagation in detail[116-118]. However, the main 
bulk of work on spectral/hp element methods for the 
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SWE are linked to numerical weather prediction or 
ocean circulation where the SWE is used as a stepping 
stone towards solving the 3-D primitive equa- 
tions[119-125].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 19 Higher harmonics generation on a semi-circular 

shoal[115] 
 

The SWE is solved in Nektar++ as a sub-model 
for the dispersive Boussinesq solver simply by 
ignoring the dispersive step. Recently a version of the 
SWE model capable of solving the flow on curved 
surfaces using Nektar++ was presented in Ref. [126]. 
The model uses the so-called method of moving 
frames[127] to express the SWE on curved and rotating 
geometries. The model was shown to exhibit exponen- 
tial convergence and handled the standard test cases 
for spherical SWE, see Fig. 20 for the flow around an 
isolated mountain. 
 
 

4. Future directions and perspectives 
Significant progress has been made in theoretical 

and applied aspects of the spectral/hp element method 
over the past two decades which have enabled its 
application to a wide range of challenging hydrody- 
namics and broader industrial problems. However, 
there still remain a number of challenges[55]. In order 
to enable the spectral/hp element method to be used to 
address difficult, large-scale, high Reynolds number 
flow problems in complex geometries, we see a 
number of areas which still require improvement: 
    (1) High-order mesh generation: Robustly gene- 

rating high-order meshes with CAD conforming rep- 
resentation of the underlying geometry remains one of 
the key challenges to industrial application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20 Spherical shallow water flow over an isolated moun- 

tain[126] 
 

(2) One of the major benefits of the spectral/hp 
element method is the opportunities presented for 
optimising the computational discretisation in accor- 
dance with the physics being modelled through hp 
adaptivity. -p adaptivity and -r adaptivity have re- 

cently been explored[128, 129] but further effort is 
needed in identifying the optimal refinement algori- 
thms to choose to optimise the computational cost 
while also improving the numerical accuracy of 
solutions. 

(3) The stabilisation techniques discussed in 
Section 1, such as SVV and projection-based filtering 
techniques, require further improvement through 
further calibration for marginal/under-resolved com- 
putations. As mentioned by Sagaut[37], “some specific 
numerical stabilisation procedures can be defined, 
which tune the numerical dissipation in such a way 
that the results remain sensitive to subgrid modeling”. 
In terms of the similarity between artificial dissipation 
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and the direct energy cascade model, some numerical 
stabilisation techniques can be used to perform 
“no-model” large eddy simulations (iLES). However, 
Sagaut stated that “certain studies have shown that, 
for coarse grids, i.e., high values of the numerical 
cutoff length, increasing the order of accuracy of the 
upwind scheme can lead to a degradation of the 
results[130]”. The proposed “DGKernel”, which emu- 
lates the upwind properties of a DG scheme, still 
requires more detailed calibration for a range of 
high-Reynolds fluid flows. 

(4) Verification and Validation of spectral/hp 
element simulations for under-resolved computations: 
The use of stabilisation techniques, such as SVV, 
allows us to interpret the under-resolved numerical 
calculations as implicit large eddy simulation. How- 
ever, we need to continue to investigate how the 
stabilisation methods and numerical properties interact 
to ensure the benefits of high-precision are not 
destroyed through artificial/ numerical pollution. 

In the context of hydrodynamics applications, 
there is substantial opportunity for gaining an impro- 
ved understanding of a wide range of physical mecha- 
nisms through the use of the spectral/hp element 
method. In particular: 
    (1) Tip vortex modelling: As indicated in Ref. [7], 
without the accurate modelling of the 3-D boundary 
layer, the developing vortex remained challenging to 
compute accurately, even for the advanced RANS 
models correcting for the high degree of curvature in 
the flow. In addition, accurately capturing the low- 
pressure region within the vortex core and sustaining 
this low pressure even just one chord length down- 
stream of the trailing edge is particularly challenging. 
As demonstrated[7], the SVV-based iLES method has 
been shown to be potential alternative for computing 
complex unsteady vortex dominated flows. Simulating 
vortical flows using the spectral/hp element method 
with the concept of the SVV-based iLES can be 
regarded as an interesting alternative method in 
hydrodynamics. 

(2) Implicit large eddy simulation: A notable 
effort has been made to refine the SVV-based strategy 
for implementing under-resolved simulations of high 
Reynolds fluid flows[38, 44]. This strategy has a great 
potential to provide high fidelity iLES computations 
for a broad range of applications in hydrodynamics. 
    (3) Fluid-structure interaction: As indicated in 
Refs. [131-135], spectral elements offer superior wave 
propagation capabilities, which has been used for 
simulations of fluid-structure interaction[133, 134, 136]. 
Interaction subject to surface waves can be attractive. 

(4) Cavitating flow: Recently, discontinuous 
spectral/hp element method has been implemented for 
the efficient and accurate simulation of multiphase 
flows[137]. The compressible Navier-Stokes equations, 

coupled with a highly realistic equation of state, are 
solved by a DG spectral element method for flows 
with cavitation. In Nektar++, the DG method and the 
flux reconstruction approach have been used to solve 
the compressible Navier-Stokes equations. This 
therefore provides a basis to apply the spectral/hp 
element method in applications of cavitating flows. 

(5) Free surface flows: As is well known free 
surface flows can be modelled as a depth average 
“shallow-water” approach or using ALE moving mesh 
techniques. Spectral/hp element method has been used 
to treat these two kinds of free surface flows[97, 138-141]. 
For the second free surface problem, discontinuous 
spectral/hp element methods hava great potential in 
applications[139-141, 143, 144], especially when h/p-adap- 
tivity is employed. 
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