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Abstract

Transient growth is quantitatively examined in two prototype separated flows
using Direct Numerical Simulation (DNS). Separated flows typically exhibit regions of
convective instability due to the inflectional velocity profiles inherent in the shear flow.
This can lead to the transient growth of small disturbances by many orders of magnitude.

After reviewing the mathematical tools and numerical techniques required, we
present an analysis of transient growth in an axisymmetric pipe with a 1:2 diametral
expansion. A direct method is used to calculate the optimal transient energy growth for
specified time horizons and Reynolds numbers up to Re=1200, and low-order azimuthal
wavenumber m. At each Re the maximum growth is in azimuthal mode m=1 and this
maximum is found to increase exponentially with Re. The time evolution of optimal
perturbations is presented and shown to correspond to sinuous oscillations of the shear
layer. Finally, full three-dimensional DNS with the inflow perturbed with Gaussian
white-noise confirms the presence of the structures determined by the transient growth
analysis.

The second prototype flow considered is the cylinder wake in the subcritical
regime. Large energy growth is observed at Reynolds numbers close to the onset of
global instability and the optimal perturbations which lead to this growth are determined.
Three-dimensional spanwise perturbations are also examined and it is found that, except
for short time horizons, the zero wavenumber is dominant. Furthermore, performing
accurate linear and transient growth analysis is found to be highly dependent on the size
of the computational domain. Adjoint eigenmodes extend far upstream of the cylinder
necessitating a long inflow. More importantly, constrictions in the cross-stream direction
are found to distort the basic flow, which has a substantial effect on the accuracy of the
analysis.

Transition in pipe flow is a topic for which there is still relatively little understand-
ing. Puffs are small regions of turbulence observed close to the transitional Reynolds
number. A gradually expanding pipe is proposed as a means to effectively produce
turbulent puffs and study their creation and decay.

xv
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Chapter 1

Introduction

In the real world fluid dynamics, such as that of an ocean wave, is very complex -

too complex to be understood in every detail, whether through experiment, analysis or

computation. Ultimately, these approaches can only ever hope to approximate certain

aspects of these highly complex flows, either through selectively resolving particular as-

pects of the problem, or by simplifying the model sufficiently so that through analysis

some meaningful conclusion can still be drawn. Nevertheless, important aspects of real-

world flows can usually be understood by looking at prototype geometries, such as those

considered in this thesis - a sudden expansion in a circular pipe and flow past a uni-

form circular cylinder. A limited number of key questions can then be posed to assess

properties such as the stability of the flow, or the transient growth of perturbations.

Through techniques of direct numerical simulation, we endeavour to compute hydrody-

namic stability properties of these flows, both global and transient in nature, to better

understand how these model problems behave and, by extension, how more complicated

flows behave. This information is valuable in many engineering applications. Techniques

such as flow control in industrial settings are one particularly important example.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: A real-world fluid flow, such as an ocean wave, is too complex to be under-
stood in every detail.

Hydrodynamic stability analysis is the process of examining the response of a

flow to infinitesimal disturbances. Such disturbances may potentially cause the flow to

transition from one state to another, such as from a laminar state to a turbulent state.

This has been a focus of research for over a century with early studies of stability being

either experimental or analytical in nature. Reynolds [1883] examined the transition

from laminar flow to turbulence in a straight pipe, and Lord Rayleigh examined, among

other flows, the instability of jets (Rayleigh [1878]) and of fluid interfaces (Rayleigh

[1883]) - later to be known as the Rayleigh-Taylor instability.

Both experiment and analysis suffer drawbacks. Experimental observations are

almost always hampered by noise in the system, making it challenging to assess critical

parameter values with a high degree of accuracy. On the other hand, analytical ap-

proaches are limited by the complexity of the Navier-Stokes equations and the necessity

of simplification. Only in the latter decades of the 20th Century have numerical tech-

niques become viable. The processing capabilities of computers continue to increase

dramatically, and they are now powerful enough to resolve the finer details of turbulent

2



CHAPTER 1. INTRODUCTION

flow in non-trivial geometries within a practical time frame. Computationally, stability

was first treated from a local perspective, but with the increased availability of com-

puting power, it is now feasible to resolve all the essential details of a flow to obtain a

global stability theory.

In this thesis we focus on incompressible Newtonian fluids which are governed

by the incompressible Navier-Stokes equations

∂tu+ (u · ∇)u = −∇p+ ν∇2u, (1.1a)

∇ · u = 0 (1.1b)

where u is the fluid velocity and ν is the kinematic viscosity. In all cases considered

the density, ρ, is constant and can be fixed at unity without any loss of generality.

We are primarily concerned with open flows, i.e those in which particles pass through

the domain of interest, as opposed to closed flows in which particles of fluid remain

within the domain boundaries for all time. The methodologies used in our analysis

will utilise the linearised form of these equations, which approximates the dynamics of

infinitesimal perturbations to some basic flow. Through this we can establish the global

stability, or instability, of this basic flow. Until recently, there lacked a cohesive theory

relating the features obtained from local stability analysis, such as regions of convective

and absolute instability, with the global framework for the stability problem. Direct

optimal growth analysis provides a global perspective on convective instabilities. We

consider such analysis for two flow problems: a sudden axisymmetric expansion, and

flow past a circular cylinder. Both problems contain a separated region of the flow

which is typically associated with a region of convective instability. This is effectively

demonstrated through the optimal growth analysis.

3



CHAPTER 1. INTRODUCTION

1.1 Outline of Thesis

We now give a brief outline of the material to follow. In Chapter 2 we outline the

fundamental details of the local and global stability analyses, augmented through the

Ginzburg-Landau equation as a simplified model of hydrodynamic problems. We then

give a rigorous formulation of the optimal growth methodology and how it might be

structured around an existing Navier-Stokes solver. This discussion includes a com-

prehensive derivation of the adjoint linearised Navier-Stokes equations and appropriate

boundary conditions. In many cases flow geometries may be more appropriately formu-

lated in a cylindrical coordinate system, and so we discuss the auxiliary terms introduced

through the expression of the Navier-Stokes equations in this form.

Chapter 3 discusses the numerical techniques used for conducting the optimal

growth analysis. We use an existing spectral element implementation for the results

presented in this thesis, but provide an overview of this discretisation technique in one

and two dimensions. This first section concludes with details of the implementation of

a new boundary condition to enforce a periodic region within part of the domain. The

second section in this chapter provides the higher level numerical details of the multi-

step discretisation of the Navier-Stokes equations and the Arnoldi-based algorithm used

for computing eigenvalues of the linearised and adjoint Navier-Stokes operators. This

section includes details of an implemented eigenvalue deflation algorithm.

Chapters 4 and 5 contain direct optimal growth analyses for a sudden expansion

of a circular pipe, and flow past a uniform circular cylinder, respectively. These analyses

have been performed using the methodologies outlined in Chapters 2 and 3. Both these

flows exhibit energy growth of several orders of magnitude, promoted by the separa-

tion bubbles and associated shear layers. Chapter 6 contains the results of numerical

simulations of the creation of turbulent puffs in a gradually expanding pipe. The expan-
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sion provides an effective drop in Reynolds number which allows the formation of such

phenomena through transition from a turbulent state to a laminar state.

In conclusion, Chapter 7 discusses the results obtained in the preceding chapters,

along with potential avenues of future research.

5



Chapter 2

Stability Analysis of Fluid Flow

2.1 Overview

We will begin by giving a brief summary of two approaches to stability analysis of open

flows. Flow stability may be considered from a local or global perspective and, through

such analyses, we can determine the control parameters, such as the Reynolds number,

at which different state bifurcations occur. We will then focus on a global approach to

assessing convective instability in open flows.

Parallel viscous flows have been studied throughout the 20th century with early

examples being solutions to the Orr-Sommerfeld equations. There is a wide literature

on the analysis of parallel flows with an extensive review being given by Drazin and Reid

[1981]. Local stability analysis was originally developed in the context of plasma physics

(see, for example, Briggs [1964] and Bers [1975]) to distinguish convective and absolute

instabilities in plasmas. The technique has also appeared in the context of geophysical

flows, and only in the 1980s did it first appear in the hydrodynamical literature. Huerre

and Monkewitz [1990] give a comprehensive early history. The methodology is described

6
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U(y)

y

Figure 2.1: Local velocity profile. Local analysis examines the stability of the velocity
profile U(y) at a given streamwise station.

by Schmid and Henningson [2001], with Cossu and Chomaz [1997] and Chomaz [2005]

giving a detailed theoretical description in the context of applications.

In such analysis the susceptibility of the flow to instability at a particular stream-

wise station in the flow is determined by examining the stability of the parallel velocity

profile at that point (see Fig. 2.1). Regions of the domain may then be classified into

one of three categories:

• locally stable;

• convectively unstable;

• absolutely unstable.

At a given station, x, the flow is considered locally stable if a fictitious parallel

flow with profile matching that at station x is stable. In such flows all disturbances always

dissipate with time. If such a parallel flow is unstable, but a disturbance propagates

upstream or downstream, such that at a given spatial location the flow eventually returns

to the basic state, the flow at that point is considered convectively unstable. On the

other hand, if at that fixed streamwise station the magnitude of the disturbance grows

7
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Figure 2.2: Diagrams of the types of flow stability and instability. In locally stable regions
(left), the disturbance decays. In convective instability (middle), the disturbance grows
as it is advected downstream, but at each streamwise station, the flow returns to its
original state as t→∞. In absolute instability (right), the disturbance at a fixed point
grows in time.

Figure 2.3: Evolution of a perturbation in a shear flow. The perturbation grows in one
region of the flow, while decaying in another.

with time, it is described as absolutely unstable. This can be effectively seen in Fig. 2.2.

However, this local approach is only valid when the flow is approximately parallel -

that is, it varies slowly in the streamwise direction on a length scale comparable to the

wavelength of the instability waves. For model flows such as mixing layers and Poiseuille

flow, this is a good approximation. Inflectional velocity profiles, such as shear layers

and wakes, are typically associated with locally convective and absolute instabilities.

However, the velocity profiles of wakes rarely vary slowly and consequently, for many

open flow problems, the local approach is not a valid approximation.

Global linear stability analysis resolves all aspects of the flow enabling a basic

8
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flow to be classified as either globally stable or globally unstable, as indicated by the

sign of the leading eigenvalues of the associated linear operator. This basic flow and any

transported perturbations are considered the result of the interaction of global modes.

Early uses of global stability techniques in the context of the cylinder wake are Noack

and Eckelmann [1994] and Barkley and Henderson [1996]. The former establishes the

stability of the linearised Navier-Stokes operator through direct eigenvalue computa-

tion (for example, using algorithms from Press et al. [1992]) while the latter uses an

iterative time-steppers approach. This iterative approach to global stability analysis is

comprehensively described in Tuckerman and Barkley [2000]. More recent studies (for

example Marquet et al. [2008a], Marquet et al. [2008c] and Ehrenstein and Gallaire

[2005]) typically use this method to compute global modes, since highly refined com-

putational meshes on more complex geometries make the direct approach too costly.

This technique is extended to the transient growth problem providing a global approach

to establishing the presence of convective instability. The transient growth process was

first proposed by Kelvin [1887] and explored by Orr [1907]. However, it is only in the

last thirty years that a more detailed understanding of the mechanism behind this phe-

nomenon has been achieved. It has recently been applied to a wide variety of applications

such as the backward-facing step (Blackburn et al. [2008a]), stenotic flow (Blackburn

et al. [2008b]), curved channels (Marquet et al. [2008b]) and the circular cylinder in the

unstable regime (Abdessemed et al. [2009]).

The local and global perspectives do not necessarily coincide. There is an ongoing

contest between the local instability which is liable to destabilise the flow, and the global

advection promoting stability by drawing disturbances away from the unstable regions.

While a globally unstable flow must necessarily expose a region of local absolute

instability (Chomaz et al. [1991]), a flow with a sufficiently small pocket of local abso-
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Local

Global Re

S CU AU

GS GU

Figure 2.4: The local and global perspectives do not necessarily coincide, with a finite
region of local absolute instability being necessary for global instability.

lute instability may remain globally stable as shown in Fig. 2.4. This is demonstrated

efficaciously by Pier [2002] and Giannetti and Luchini [2007] for the prototype flow past

a circular cylinder in which a region of absolute instability develops at Reynolds number

25, while the flow remains globally stable until Reynolds number ≈ 47. In the context of

shear layers and separation bubbles Hammond and Redekopp [1998] report the onset of

absolute, and ultimately global, instability with increased reverse flow. Such inflectional

profiles are well known for being convectively unstable and imposing large transient

amplifier dynamics upon perturbations in the shear layer. One prototype flow demon-

strating this is the flow through a sudden axisymmetric expansion which is considered

in Chapter 4; other examples will be discussed later.

This thesis is primarily concerned with the global techniques. We will first give

an overview of the local stability analysis technique and describe the Ginzburg-Landau

model as a prototype equation for demonstrating many of the fundamental concepts,

before introducing global stability analysis. The remaining discussion in this chapter will

then concern the use of global techniques to determine convective instabilities in flows

which are traditionally considered globally stable.
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2.2 Local Stability Analysis

For this type of analysis the velocity profile at any given streamwise location must vary

slowly in the direction of flow, in accordance with the Wentzel-Kramers-Brillouin-Jeffreys

(WKBJ) theory. Typically, the basic flow has a profile U(y,Re) extending indefinitely in

the streamwise direction. The linearised Navier-Stokes equations, H, acting on a flow

perturbation, u′(x, t), may be expressed in the form

D

[
i
∂

∂t
,−i ∂

∂x
;Re

]
u′(x, t) = Hu′(x, t) = 0,

with an associated dispersion relation,

D[ω, k;Re] = 0,

governing the relationship between the wavenumbers, k, and the frequencies, ω, of the

instability waves. The temporal modes, ω(k,Re), may be determined as a function

of wavenumber, and the spatial branches, k(ω,Re), as a function of frequency. The

impulse response, G(x, t), of the flow determines whether the profile is convectively or

absolutely unstable, and is given by

D

[
i
∂

∂t
,−i ∂

∂x
;Re

]
G(x, t) = δ(x)δ(t)

which can be solved directly in (k, ω)-space (Huerre and Monkewitz [1990]). If limt→∞G(x, t) =

0 along every ray with x/t constant, then the flow is linearly stable. Otherwise, the limit

along the ray x/t = 0 determines the type of instability as one of:

• limt→∞G(x, t) = 0 along x/t = 0⇒ convectively unstable;

• limt→∞G(x, t) =∞ along x/t = 0⇒ absolutely unstable.

This is evident from the diagram in Fig. 2.2. This technique may be best demonstrated

by an example on the Ginzburg-Landau equation.
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2.2.1 Ginzburg-Landau Model

The Ginzburg-Landau equation is considered an accurate prototype for many physical

processes, and has been used to explore aspects of these systems on a more fundamental

level. In our context, the governing equation is well suited to modelling aspects of

hydrodynamic systems and it exhibits many of the eminent features one sees in these

situations, including the transient dynamics we are interested in. While not specifically

in a hydrodynamic context, Deissler [1987] explored many of the properties of this

equation, including the limits for convective and absolute instability. Subsequently, the

equation has been used as a demonstrative model in numerous studies, for instance

Chomaz et al. [1988] and Cossu and Chomaz [1997], as well as the reviews by Huerre

and Monkewitz [1990] and Chomaz [2005].

The Ginzburg-Landau equation models a complex amplitude function A(x, t)

satisfying

∂A

∂t
+ U

∂A

∂x
= µ(x)A+ (1 + icd)

∂2A

∂x2
− (1 + icn)|A|2A. (2.1)

Linearising Eqn. (2.1) about A = 0, the model exposes the local stability concepts

through variation of the parameter µ. We now fix µ and examine the linearised Ginzburg-

Landau equation,

D

[
i
∂

∂t
,−i ∂

∂x
;Re

]
Ã(x, t) = i

∂Ã

∂t
+ iU

∂Ã

∂x
− iµÃ− (i− cd)

∂2Ã

∂x2
= 0, (2.2)

and consider travelling wave solutions of the form Ã(x, t) = ρei(kx−wt). The linearised

model has the dispersion relation,

ω = iµ+ kU + k2(cd − i). (2.3)

Eigenvalues of this linear operator are

λ = −iω = µ− ikU − k2(1 + icd) (2.4)
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and so it is required that µ < 0 for stability at all wavenumbers, k. To distinguish be-

tween the convectively and absolutely unstable states, we are interested in the evolution

of the solution in a static frame of reference (along the ray x/t = 0) or, equivalently in

spectral space, the wave having zero group velocity,

∂ω

∂k
= 0. (2.5)

This gives a critical wavenumber, k0, and frequency, ω0, as

k0 = − U

2(cd − i)

ω0 = i

(
µ− U2

4(1 + icd)

)
The condition for absolute instability is that ω0 > 0 and so the solution becomes

absolutely unstable at

µt =
U2

4(1 + c2
d)
. (2.6)

In the interval 0 < µ < µt, for U > 0, the solution is convectively unstable.

This solution is relatively straightforward if µ is a constant, but does not represent

the dynamics of real flows where there are regions of convective and absolute instability.

We now consider the case where µ is slowly varying. Chomaz et al. [1988] set µ(x) =

µ0 + µ′x with the restriction that µ′ < 0. This model now presents both convective

and absolute instability as well as linear stability in different parts of the domain, with

disturbances being convected towards the region of stability. In this paper they contrast

bifurcations to both local and global modes in the context of the Ginzburg-Landau model

and conclude that regions of absolute instability may lead to self-sustained oscillations

in the system. This provides a qualitative explanation for the hydrodynamic oscillations

seen in some flows. This phenomenon is precisely that reported for flow past a circular

cylinder where Pier [2002] reports oscillations associated with the region of absolute
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µt

µc
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x

µ(x)

µt
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x
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Figure 2.5: Instabilities of the Ginzburg-Landau equation with linear and quadratic coef-
ficient µ. With µ having linear form (left), the equation exhibits a pocket of convective
instability (CU) between regions of absolute instability (AU) and local stability (S). With
µ having quadratic form (right), it exposes a pocket of absolute instability surrounded
by regions of convective instability, representative of real flows.

instability developing behind the cylinder. In Cossu and Chomaz [1997], they use a

quadratic form µ = µ0 +µ2x
2, with µ2 ≤ 0. This form allows for a pocket of convective

instability to exist (see Fig. 2.5), surrounded by local stability, and is a valid model for

many shear flows. With µ2 non-zero, a spatial dependence exists and a global stability

problem leads to a critical value µc > µt above which global instability occurs. The strict

inequality indicates that a pocket of absolute instability exists prior to global instability,

as seen in real flows.

2.3 Global Stability Analysis

In the context of a non-linear dynamical system, global stability is defined as the system’s

susceptibility to infinitesimal disturbances from an equilibrium point, which in our case

is a steady-state solution to the Navier-Stokes Eqns. (1.1), as expressed in the following

theorem.

Theorem 2.3.1. Given a non-linear system u̇ = f(u), let u0 be an equilibrium point,
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such that f(u) is continuously differentiable about a neighbourhood of u0. Let Df(u0)

be the Jacobian of f evaluated at u0 and so u̇ = Df(u0)u is the linearisation of

u̇ = f(u) about u0. Then,

• The point u0 is asymptotically stable if Re(λi) < 0 for all eigenvalues λi of

Df(u0);

• The point u0 is unstable if Re(λi) > 0 for one or more eigenvalues λi of Df(u0).

We now present a brief discussion of the tools for our analysis, namely the

linearised Navier-Stokes equations. We define a basic flow, U , as a steady solution to

the Navier-Stokes equations. The assumption is made that any disturbance is small, so

as to justify a linear approximation, and express a solution, u, as a linear combination

of the steady base-flow, U , and an infinitesimal disturbance, u′. That is, u = U + εu′.

Substitution into Eqns. (1.1) leads straight to the linearised Navier-Stokes equations for

the disturbance,

∂u′

∂t
+ (u′ · ∇)U + (U · ∇)u′ = −∇p+Re−1∇2u′ (2.7a)

∇ · u′ = 0 (2.7b)

The base flow, U , is a time-independent solution to Eqns. (1.1) and we have taken the

density, ρ, to be unity without loss of generality. Equations (2.7) can be expressed more

eloquently as

∂u′

∂t
= Lu′ (2.8)

with solution u′(t) = A(t)u′(0) in terms of the state transition operator A(t) = expLt.

A solution to Eqns. (2.7) can be considered as a linear combination of the eigenmodes

of L, each with associated eigenvalue λi. The stability of the flow is then determined by
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these eigenvalues, with those having a positive real part being associated with a globally

unstable mode. In practice, we compute not the eigenvalues of L, but the eigenvalues,

µi, of A(t) for an arbitrary time t. These are then related as

µi = expλit (2.9)

and as such the condition of global stability can be formulated as |µi| < 1, ∀i.

2.4 A Global Approach to Convective Instability and Tran-

sient Growth

So far we have only determined global stability through fully resolved DNS. With the

recent increases in computing power there is a great desire to unify the local and global

approaches to stability. One aspect of this is achieved through being able to quantify

convective instabilities within a global framework. From a global perspective, a con-

vectively unstable flow is one which exposes a region of localised convective instability,

while remaining globally stable. In such flows a disturbance passing through this region

will experience energy growth as it is transported by the base flow. The growth will

continue as the disturbance advects downstream until it enters a region of local stability

where it decays.

Mathematically, these effects can be examined in the context of the normality of

the linear operator A(t) and its eigenvectors (Chomaz [2005]). For a given linearly stable

flow described by this operator, the set of complex eigenvalues lies within the unit circle.

Consequently, the eigenvalues of the linear operator L lie in the negative half-plane and

therefore each associated eigenvector is necessarily decaying. In a normal operator all

eigenvectors are pairwise orthogonal, forming a basis of the image, and any given vector

within this image is necessarily a linear combination of these eigenvectors and as such
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û0

û1

u(t)

Figure 2.6: Phase plane diagram of transient growth. The growth of the blue vector
arises due to the non-orthogonality and largely differing decay rates of the eigenvectors
u0 and u1. The dotted line shows the initial magnitude of the vector.

must decay. In contrast a non-normal operator has non-orthogonal eigenvectors which,

if decaying at substantially different rates, can induce an initial growth of a vector due

to their non-orthogonal interaction. This concept is most effectively portrayed through

a phase plane diagram such as that in Fig. 2.6. It shows the evolution of the blue

vector, indicated by the red line u(t), under the decay of the two eigenvectors u0 and

u1, where u1 decays substantially faster than u0. The linearised Navier-Stokes operator

is an example of a non-normal operator and is therefore not self-adjoint.

This interpretation leads to the pseudospectra of the linear operator L, where

the extent into which the spectrum protrudes into the right half of the complex plane

characterises the magnitude of the potential transient growth. This idea, in the context

of fluid flow, is discussed extensively in Trefethen and Embree [2005], but it is outside

of the scope of this thesis. Instead we shall concentrate on physical interpretations of

the observed phenomena.
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There are a number of studies in the existing literature applying these global

techniques to a range of separated flows to assess the presence of convective instabilities.

In particular, these transient dynamics have been studied in the context of the backward

facing step (Blackburn et al. [2008a]), stenosis (Blackburn et al. [2008b]), a curved

channel (Marquet et al. [2008b]) and a cavity (Åkervik et al. [2007]). Together they

provide a broad insight into the presence of convective instabilities in these types of

shear layer flows.

The backward-facing step flow is the ideal model for separated flows, creating a

strong shear layer in the simplest of geometries. Blackburn et al. [2008a] found large

transient growths occurred even for Reynolds numbers within the linearly stable regime.

They find the step-edge is most sensitive to disturbances with growth on the order

of 105 observable, if the flow is suitably perturbed there. The energy continues to

grow as the disturbance passes through the recirculation bubble and peaks at a point

beyond the reattachment point. Maximum growth is seen around 25 step-heights beyond

reattachment of the primary separation bubble, but an additional recirculation bubble on

the upper wall may complicate matters. In this respect the rotational analogue of this

geometry - the axisymmetric sudden expansion, considered in Chapter 4 - is a cleaner

example with only a single recirculation region.

Stenoses are of fundamental biological relevance and consequently the transient

properties of this flow have important medical repercussions. For steady flow in an

arterial constriction, Blackburn et al. [2008b] find that energy growth on the order of

105 is possible, while for the pulsatile case this could be as high as nine orders of

magnitude. More recently, Mao et al. [2009] have shown growths on the order of 1025

could occur in a more physiologically realistic flow. The resulting wave packet takes

the form of a sinuous oscillation of the shear layer, qualitatively different from the roll
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structures seen in the backward-facing step (Blackburn et al. [2008a]).

Marquet et al. [2008a] compute the global stability of an S-shaped air-intake.

The flow is found to first become unstable to three-dimensional perturbations deforming

the recirculation bubble - the same as was reported for the discontinuous backward-facing

step (Barkley et al. [2002]). They examine both the leading direct and adjoint modes to

explain both the lift-up and convective non-normalities present in the linearised Navier-

Stokes operator (see Sec. 2.4.2) and they propose techniques for passive and active flow

control. Subsequently, Marquet et al. [2008b] have examined and compared the two

types of local dynamics - amplifiers and resonators - in the context of this S-shaped

duct and find that given extrinsic noise in the system, the amplifier dynamics dominate.

In much the same way, optimal growth has been computed for a cavity flow

which encapsulates the recirculation bubble by Åkervik et al. [2007]. They demonstrate

the oscillatory flow can be represented as a summation of global modes and therefore

derive a reduced model consisting only of those modes which capture the main dynamics

of the flow, a process with value in an industrial setting. Henningson and Åkervik [2008]

similarly demonstrate the construction of low-order dynamical models of other flows,

including a liquid curtain and Blasius boundary layer.

2.4.1 Calculating Transient Growth

Due to the local nature of convective instabilities they can not be determined immedi-

ately from the previous eigenvalue analysis outlined in Sec. 2.3. This only describes the

behaviour of global modes in the evolution of the flow. Instead, we introduce an extra

parameter to the problem and examine the maximum energy growth at a particular time

horizon, τ , of the flow disturbance, u′, over all possible initial conditions. This allows

us to essentially map out convectively unstable regions of the domain, characterised by
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growth in the perturbation energy. Full details of this procedure are available in Barkley

et al. [2008], but an overview shall be provided here.

We begin the problem formulation by defining the energy of a disturbance at a

time t, expressed in terms of the L2 norm, as

E(t) = 〈u′(t),u′(t)〉L2 .

We will subsequently assume (and thus drop the notation) that all fields are in L2. We

are then interested in the greatest relative energy gain, at a specified time horizon τ , by

any initial condition u′(0),

G(τ) = max
u′(0)

E(u′(τ))
E(u′(0))

. (2.10)

We can assume without loss of generality that ||u′(0)|| = 1.

Recall that the evolution operator A(t) takes u′(0) to a future time u′(t) as

u′(t) = A(t)u′(0). Substitution for E in Eqn. (2.10) gives

G(τ) = max
u′(0)
〈A(τ)u′(0),A(τ)u′(0)〉

= max
u′(0)
〈u′(0),A∗(τ)A(τ)u′(0)〉

= ||A∗(τ)A(τ)||, (2.11)

where A∗(τ) is the adjoint of the operator A(τ). The operator A∗(τ)A(τ) is self-adjoint

(and thus normal) and, as a consequence of Eqn. (2.11), ||A∗(τ)A(τ)|| = maxi λi, the

largest eigenvalue of A∗(τ)A(τ). Since A∗(τ)A(τ) is self-adjoint, these eigenvalues are

necessarily non-negative and real. Instead of finding the eigenvalues of A(t) (i.e. at any

arbitrary time) and looking for eigenvalues of L with positive real part, we now find the

eigenvalues of A∗(τ)A(τ) of which the largest eigenvalue corresponds to the maximum

possible relative growth attainable over the time horizon, τ . Note that A∗(τ)A(τ) is
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computed by first applying A(τ), followed by A∗(τ). The eigenvector vj corresponding

to λj is the disturbance which induces this optimal growth and satisfies

A∗(τ)A(τ)vj = λjvj . (2.12)

In terms of the singular value decomposition, A(τ)vj = σuj , we see that

A∗(τ)A(τ)vj = σ2vj (2.13)

which is exactly the preceding eigenvalue equation. Geometrically, the singular value

decomposition of A(τ) maps the basis of functions V to the new basis of functions U .

As such, the optimal initial conditions vj are evolved, under the operator A(τ), to their

point of maximum growth, uj . The uj can be found simultaneously during the iterative

eigenvalue techniques at little extra computational cost.

2.4.2 Adjoint Form of the Linearised Navier-Stokes Equations

We now discuss the derivation of the adjoint operatorA∗(τ). We express mathematically

and subsequently discretise this operator, rather than computing the adjoint of the

forward operator discretisation. Proceeding like this ensures all boundary conditions on

the adjoint operator are correctly applied and, given an existing implementation of the

forward system, does not require knowledge or modification of the specific underlying

solver in order to form the adjoint.

Definition (Adjoint operator) The adjoint operator A∗(τ) : L2 → L2 of the operator

A(τ) : L2 → L2, is defined as that which satisfies

〈A(τ)u′,v′〉 = 〈u′,A∗(τ)v′〉 ∀u′,v′ ∈ L2 (2.14)

with 〈·, ·〉 being the inner product

〈u′,v′〉 =
∫

Ω
u′v′dΩ. (2.15)
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In our context, we are specifically working in the L2 space even though this

definition generalises to any Hilbert space.

We begin by considering the derivation of the adjoint form of fundamental spatial

and temporal derivatives in a space-time domain - namely first- and second-order spatial

derivatives and first-order time derivatives. Using integration by parts the adjoint forms

of these operators are computed as

∂

∂xi
:
∫
T

∫
Ω

∂ui
∂xi

vjdxdt =
∫
T

[uivj ]Ωdt−
∫
T

∫
Ω
ui
∂vj
∂xi

dxdt, (2.16a)

∂

∂t
:
∫
T

∫
Ω

∂ui
∂t

vjdxdt =
∫

Ω
[uivj ]TdΩ−

∫
T

∫
Ω
ui
∂vj
∂t

dxdt, (2.16b)

∂2

∂x2
i

:
∫
T

∫
Ω

∂2ui
∂x2

i

vjdxdt

=
∫
T

[
∂ui
∂xi

vj

]
Ω

dt−
∫
T

[
∂ui
∂xi

∂vj
∂xi

]
Ω

dt+
∫
T

∫
Ω
ui
∂2vj
∂x2

i

dxdt. (2.16c)

In practice the boundary terms introduced by the integration by parts will evaluate to

zero since, for the moment, we assume that u and v have compact support in the

space-time domain. These boundary conditions will be discussed in more detail later in

this section.

We now consider Eqns. (2.7) and the evolution of both the velocity components,

u′, and the pressure field p′, in time. To simplify notation we combine these components

into a single vector, q′, defined as

q′ =

 u′
p′

 . (2.17)

Equations (2.7) can then be expressed using the single operator

H =

 −∂t −DN +Re−1∇2 −∇

∇· 0

 (2.18)
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as Hq′ = 0, where DN = (U · ∇) + (∇U). We can rewrite the above operator in

terms of its component derivatives. Let the 3 × 3-matrices A,B,C and D, and their

adjoint forms, be defined as:

Aij = −A∗ij = −δij
∂

∂t
(2.19a)

Bij = −B∗ij = δij
∑
i

Ui
∂

∂xi
(2.19b)

Cij = C∗ji =
∂Ui
∂xj

(2.19c)

Dij = D∗ij = δijRe
−1 ∂

2

∂x2
i

. (2.19d)

These matrices correspond to the temporal (A), linearised advection (B and C),

and viscous diffusive (D) operators. Note that only C contains off-diagonal entries. The

linearised advection terms are at the centre of the non-normality of the operator. The

C matrix, with its off-diagonal elements, generates streamwise velocity perturbations

due to the transport of base flow momentum by cross-stream velocity terms (Schmid

and Henningson [2001]). This lift-up non-normality, first explored by Butler and Farrell

[1992], arises due to the adjoint operator transposing the ∂yU from the streamwise

component to the cross-stream component. In contrast, the convective non-normality,

a feature only present in open flows, arises due to the change in sign of (U · ∇). This

has a consequence of spatially separating the direct and adjoint modes, as observed by

Marquet et al. [2008a] for the S-shaped duct.

Our linearised Navier-Stokes equations can then be written as A+B + C +D −∇

∇· 0

 . (2.20)
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Following on from Eqns. (2.19) and Eqns. (2.16a), we can express the adjoint operator

H∗ (that is, the trans-conjugate of H) as

H∗ =

 ∂t −DN∗(u′) +Re−1∇2 −∇

∇· 0

 (2.21)

as H∗q′∗ = 0, where DN∗ = −(U · ∇) + (∇U)>. The sign of the pressure term and

incompressibility condition are unchanged due to the effective sign cancellation of the

matrix transpose and integration by parts. However, the sign of the adjoint pressure

term is essentially arbitrarily defined, given the equations should be equally valid with

the divergence condition negated.

Boundary conditions

Up to now we have considered u′ to have compact support which equates to zero

Dirichlet boundary conditions on all domain boundaries, which includes initial conditions

to both the forward and adjoint systems. Of course, this will only present the trivial

solution and so we must allow for non-zero initial conditions while still satisfying the

restrictions imposed by the forward and adjoint systems. Specifically, Eqn. (2.16b)

imposes the restriction that ∫
Ω

[
u′ · u′∗

]
T

dΩ = 0 (2.22)

which in terms of the inner product (·, ·) requires

〈u′(τ),u′∗(τ)〉 = 〈u′(0),u′∗(0)〉. (2.23)

Consequently, we have that

〈A(τ)u′(0),u∗(τ)〉 = 〈u′(0),A∗(τ)u∗(τ)〉 (2.24)

as defined in Eqn. (2.14).
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2.4.3 Cylindrical Coordinates

We now consider the Navier-Stokes equations in cylindrical coordinates for conducting

transient growth analysis in geometries that lend themselves to this system. One typical

example is a sudden expansion in a circular pipe (see Chapter 4) and the gradually

expanding pipe (see Chapter 6). Let the velocity be defined as

u = uxex + urer + uθeθ. (2.25)

where ex, er and eθ denote the unit vectors in the x, r and θ directions respectively.

For a scalar field f , derivative operators in cylindrical coordinates take the form:

∇f =
(
∂xf, ∂rf,

1
r
∂θf

)
, (2.26a)

∇ · f = ∂xf +
1
r
∂r(rf) +

1
r
∂θf, (2.26b)

∇2f = ∂xxf +
1
r
∂r(r∂rf) +

1
r2
∂θθf. (2.26c)

Additionally, extra terms arise from differentiation of the unit vectors with respect to

the azimuthal coordinate:

∂θer = eθ, (2.27a)

∂θeθ = −er. (2.27b)

This will consequently introduce extra terms in the Navier-Stokes equations

∂tu+N (u) = −∇p+Re−1D(u)

N (u) = (u · ∇)u

D(u) = ∇2u

with incompressibility constraint

∇ · u = ∂xux +
1
r
∂r(rur) +

1
r
∂θuθ −

uθ
r

= 0.
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Specifically, in component form the non-linear operator N(u) takes the form

N (u)x = ux∂xux + ur∂rux +
1
r
uθ∂θux

N (u)r = ux∂xur + ur∂rur +
uθ
r

(∂θur − uθ)

N (u)θ = ux∂xuθ + ur∂ruθ +
uθ
r

(∂θuθ + ur)

where the additional term −u2
θ/r arises from Eqn. (2.27b) and similarly uθur/r arises

from Eqn. (2.27a). The D(u) operator takes the form

D(u)x = ∂xxux +
1
r
∂rr∂rux +

1
r2
∂θθux

D(u)r = ∂rrur +
1
r
∂rr∂rur +

1
r2
∂θθur −

uθ
r2
− 2
r2
∂θuθ

D(u)θ = ∂xxuθ +
1
r
∂rr∂ruθ +

1
r2
∂θθuθ −

uθ
r2

+
2
r2
∂θur

again with the additional terms introduced from Eqn. (2.27). The equations are typically

multiplied by r to remove all but a 1/r singularity on the diffusive term. Boundary

conditions for the cylindrical case are detailed in Blackburn and Sherwin [2004].

2.4.4 Span-wise Wavenumber Dependence

In geometries with a homogeneous third direction, the linear solution u′ may be decom-

posed into a Fourier series

u′(x, y, z) = û(x, y)eiβz + cc.

The linear nature of the solution results in a decoupling of these waves, allowing the

solutions for individual wavenumbers, β, to be computed separately in a two-dimensional
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context. Eigenmodes of A∗(τ)A(τ) then have the trigonometric form

ũx(x, y, z) = ûx(x, y) cos(βz)

ũy(x, y, z) = ûy(x, y) cos(βz)

ũz(x, y, z) = ûz(x, y) sin(βz)

p̃(x, y, z) = p̂(x, y) cos(βz)

The azimuthal symmetry in cylindrical coordinates results in a Fourier decomposition

with azimuthal modes. In this case we consider β discrete, rather than continuous and

have βz = mθ for m ∈ N.

We will use the techniques covered in this chapter for solving the problems

discussed in Chapters 4, 5 and 6. In the next chapter we will review the numerical

methods used for solving the Navier-Stokes equations.
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Chapter 3

Numerical Techniques

In this chapter we discuss the formulation of numerical methods to solve the problems

outlined in the previous chapter. These methods include the discretisation of the Navier-

Stokes equations as well as the outer level eigenvalue algorithms required for the linear

analysis. This chapter additionally includes details of two modifications made to the

existing code base: a copy boundary condition (Sec. 3.4); and an eigenvalue deflation

algorithm (Sec. 3.6.1). However, we will first examine the spectral element method

which underpins the direct numerical simulation code (Blackburn and Sherwin [2004])

used throughout this thesis.

3.1 Spectral Element Formulation in One-Dimension

The spectral element method, first pioneered by Patera [1983], draws on the geometric

flexibility of a piecewise linear finite element scheme, and the high order accuracy and

exponential convergence properties of spectral techniques. In analogy to a finite element

method, the domain is broken down into elemental regions on which a polynomial basis is

used to represent the solution. This synergy gives the flexibility to refine both globally,
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by increasing polynomial order (p-refinement), or locally, by refining those elemental

regions where greater resolution in the solution is required (h-refinement). We give

a description of the technique in the one-dimensional case, before discussing how the

method extends to two-dimensions where it is used to solve the fluid problems included

in this thesis.

3.1.1 Domains and Elements

Consider a one-dimensional domain Ω, decomposed into a set of elemental regions

Ωe = [xe, xe+1], such that

Ω =
⋃
e

Ωe

and for the corresponding open intervals Ω̃e = (xe, xe+1),

Ω̃e ∩ Ω̃f = ∅ ∀e 6= f.

The dependent variable of our PDE is discretised at fixed quadrature points in the ele-

ment and represented in terms of an orthogonal expansion basis. With this formulation

the necessary numerical integration and differentiation can be performed to solve a given

problem.

To express a function in terms of the orthogonal basis efficiently on any arbitrarily-

shaped element, each one is mapped from a standard element, Ω, on which the poly-

nomial basis is defined, and is the foundation on which we define our integration and

differentiation. This is, in the simplest case, a straightforward linear mapping, although

more complex functions may account for curved elemental surfaces. We first consider

how to represent a function on the one-dimensional standard element.
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Ω

Ω0 Ω1 Ω2 Ω3

x0 x1 x2 x3 x4

u(x)

Ω−1 1

χ0(ξ)

Figure 3.1: Diagram of a one-dimensional domain decomposition. A continuous function
u(x) on the domain Ω is approximated on each element separately through a polynomial
expansion basis on the standard element Ω = [−1, 1]. The mapping χe maps the
standard element onto the element Ωe.

Definition The one-dimensional standard element is defined as

Ω = [−1, 1].

We can map the standard element onto an arbitrary element by defining a linear

mapping χe : Ω̄→ Ωe such that

x = χe(ξ) =
1− ξ

2
xe +

1 + ξ

2
xe+1 ξ ∈ Ω̄.

This mapping has an analytical inverse

ξ = χ−1
e (x) = 2

x− xe
xe+1 − xe

− 1 x ∈ Ωe.

Using this map we can now translate a function, defined on Ω, to any element and

thus provide the ability to extend numerical operations on the standard element onto

an element of any size and orientation. This is summarised in the diagram in Fig. 3.1.
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The standard element is discretised at Q points, also termed quadrature points

due to their subsequent use in numerical integration. Furthermore we construct a basis

of P polynomials with which to represent a function on the standard element.

Definition The space of all polynomials of degree n or less on the standard element Ω̄

shall be denoted by Pn(Ω̄).

Definition (Local basis functions) A continuous function on the standard element is

approximated by a set of P polynomial basis functions, denoted as {φp}, p = 0, . . . , P−

1, φp ∈ PP−1(Ω̄). Using the above mapping, χe(ξ), we denote the basis on each

arbitrary element, e, as

φep(x) = φp(χ−1
e (x)).

We use φ to denote general basis functions where the context is independent of

the exact choice of function, but will shortly define symbols to represent specific classes

of bases for which the type is relevant.

Definition (Global basis function) For the pth elemental basis function on element e,

denoted locally as φep(x) with x ∈ Ωe, the corresponding basis function on Ω is defined

as

Φk=k(p,e)(x) =


φep(x), if x ∈ Ωe,

0, otherwise.

The choice of φep(x) is critical in finding a balance between the quality of the numerical

convergence properties and the computational efficiency of the scheme - the resulting

mass matrix should be numerically efficient to implement in terms of minimising its

bandwidth. Some bases will expose a structure which can be exploited to significantly
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reduce computation time for matrix-matrix and matrix-vector operations. However,

these benefits must be weighed against the ability of the basis to accurately approximate

the solution and the computational complexity of generating the matrix system. The

basis functions we will consider are chosen from one of two polynomial categories which,

as shall be discussed next, exhibit different numerical characteristics.

Unlike a trigonometric bases, polynomial bases allow for non-periodic boundaries

on individual elements - a property which is essential for domain decomposition. The

categories of polynomial bases we consider are:

• Nodal - a basis of interpolation polynomials through a fixed set of zeros;

• Modal - a hierarchical basis of polynomials.

Nodal bases are typically more straightforward to implement due to their correlation

with the physical domain - the spectral coefficients approximate the solution at the

interpolation points. However, they can produce a more structured and computationally

efficient matrix system (reduced bandwidth) which will provide better performance and

potentially more scope for parallelisation. The modal coupling can be circumvented

using boundary-interior decomposition to separate off those boundary modes liable to

create dependencies.

Definition (Nodal expansion basis) Given a set of Q points Γ = {ξ0, . . . , ξQ−1} on the

standard element, a nodal expansion basis, φp = hp, is a set of Q polynomials of order

P = Q− 1, such that

NP = {hp(ξ) ∈ PP (Ω̄)|hp(ξq) = δpq, p = 0, 1, . . . , Q− 1}

Locally, they shall be denoted as hep(x), and globally as Hk(x).
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h0(ξ) h1(ξ) h2(ξ) h3(ξ) h4(ξ) h5(ξ)

-1 1
Ω

Figure 3.2: Basis of Lagrange interpolation polynomials. They are defined through the
zeros of Legendre polynomials and the points −1 and 1. Here Q = 6 and each of the
six polynomials are of order P = 5.

Note that while the discretisation matches the solution at the nodes, that is

u(ξq) = ûq, the PDE is approximated at these points. Typically a nodal expansion basis

is generated using Lagrange interpolation through the nodal points. This is defined as

φp(ξ) = hp(ξ) =

∏Q
q=0,q 6=p(ξ − ξq)∏Q
q=0,q 6=p(ξp − ξq)

.

A graphical representation of the Lagrange polynomial basis is given in Fig. 3.2

While any choice of interior nodal points could be used, the zeros of a class of

Jacobi polynomials (see App. A.1) leads to a highly optimal implementation. It was first

noticed by Gauss that integration using specific choices of n points could yield an exact

result for polynomials of order 2n − 1 or less. This idea forms the basis of Gaussian

quadrature rules. Specifically, the end points of the interval together with zeros of

Legendre polynomials (see App. A.3) are chosen for the quadrature points in our code

base, which are denoted as the Gauss-Lobatto-Legendre points. Legendre polynomials

are a subset of the Jacobi polynomial family with α = β = 1.

The pth nodal Lagrange interpolation polynomial basis function, hp(x), through
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the nodes ξα,βi,Q (zeros of Jacobi polynomial Pα,βQ−1) can then be expressed as,

hp(ξ) =


1, if ξ = ξp,

(ξ2−1)
h
Pα,βQ−1(ξ)

i′
(Q−1)(Q+α+β)Pα,βQ−1(ξj)(ξ−ξj)

, otherwise.

In the code used throughout this thesis, the choice of polynomial basis is the Lagrange

interpolation polynomials through the Gauss-Lobatto-Legendre points.

Definition (Modal expansion basis) The modal basis φp(x) = ψp(x) is a set of P

polynomial functions such that ψp(x) ∈ Pp(Ω̄), that is,

BP =
{
ψp(x) ∈ Pp(Ω̄)|0 ≤ p ≤ P − 1

}
,

and BP ⊂ BP+1.

Consequently, modal bases can be easily extended through the addition of a single

mode to the basis. This would make them particularly effective for implementing p-type

refinement since any pre-computed values (such as Gaussian integration weights) need

not be recomputed. Only those values for the additional mode need be computed.

3.1.2 Method of Weighted Residuals

The method of weighted residuals is formulated around the discretisation error, or resid-

ual, in uδ of a continuous function u given a set of basis functions {φp}. By applying

different test functions with the Legendre inner product, different projection operations

can be applied. Initially, we restrict ourselves to the standard element.

Definition The Legendre inner product of two functions f and g is defined as

(f, g) =
∫ 1

−1
f(x)g(x)dx.
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Definition For a continuous solution u(ξ) on the domain Ω̄, the finite element approx-

imation uδ(ξ) in terms of elemental modes is expressed as

uδ(ξ) =
P∑
p=0

ûpφp(x). (3.1)

We consider the residual of our approximation in relation to the true solution,

R(ξ) = uδ(ξ)− u(ξ). (3.2)

Given the set of test functions, vj , the spectral coefficients, ûk, are computed such that

the Legendre inner product of the residual with the test functions is zero. That is,

(vj(ξ), R(ξ)) = 0.

Note that the test functions are defined to be zero on all Dirichlet boundaries. Taking

the inner product of Eqn. (3.2) gives(
vj(ξ),

∑
p

ûpφp(ξ)

)
= (vj(ξ), u(ξ)) .

The choice of test functions vj will result in different types of projection. For the Galerkin

projection, the set of test functions are chosen to be the same set of basis functions,

that is, {vj} = {φj}. Therefore, we have that(
φj(ξ),

∑
p

ûpφp(ξ)

)
= (φj(ξ), u(ξ)) . (3.3)

Hence, the weak Galerkin form of a PDE is found by forming the inner product

with the test functions vj , thus for Fu = 0 we require that

(v,Fu) = 0
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3.1.3 Numerical Integration

Numerical integration, in our case called Gaussian quadrature, is the technique used

to compute a numerical approximation to the integral of a discretised function on a

domain. It is a weighted sum of function values at a set of fixed quadrature points. The

integrand is expressed in terms of Lagrange polynomials in the same way as for a nodal

basis, and is given by

u(ξ) =
∑
q

u(ξq)hq(ξ) + ε(u).

Consequently, we have ∫ 1

−1
u(ξ)dξ =

∑
q

u(ξq)wq, (3.4a)

wq =
∫ 1

−1
hq(ξ)dξ. (3.4b)

The quadrature weights wq are precomputed for the standard element. This form of

integration is particularly accurate for carefully chosen quadrature points, ξq, at the roots

of Jacobi polynomials. For the exact values of ξq and wq at such zeros see App. A.3.1.

To extend this to arbitrary elements we use a change of variable to account for

the mapping χe(ξ). To compute the integral of a function u(x) on the element e = [a, b]

we evaluate ∫ b

a
u(x)dx =

∫ b

a

∑
q

ûqh
e
q(x)dx,

=
∑
q

ûq

∫ b

a
heq(x)dx,

=
∑
q

ûq

∫ 1

−1
hq(χ−1

e (x))
dξ
dx

dξ,

=
b− a

2

∑
q

ûqwq,
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where the wq are as defined in Eqn. (3.4b). The coefficients (b− a)/2 are also precom-

puted for each element e.

3.1.4 Numerical Differentiation

Given the approximation of u(ξ) in terms of the expansion basis φp from Eqn. (3.1), the

derivative of u(ξ) at a given node ξq is evaluated as

du(ξ)
dξ

∣∣∣∣
ξ=ξq

=
∑
p

ûp
dφp
dξ

∣∣∣∣
ξq

,

which requires knowledge of
dφp
dξ . This is known as collocation differentiation since it is

performed in physical space. Differentiation on an arbitrary element is achieved using

the chain rule. If we wish to evaluate the derivative of a function u(x) with respect to

x, at the point z in element e, it follows that

du
dx

∣∣∣∣
x=z

=
d

dx

[∑
p

ûpφ
e
p(x)

]∣∣∣∣∣
x=z

=
∑
p

ûp
dφep(x)

dx

∣∣∣∣∣
x=z

=
∑
p

ûp
dφp(ξ)

dξ

∣∣∣∣∣
ξ=[χe]−1(z)

dξ
dx

=
2

b− a
∑
p

ûp
dφp(ξ)

dξ

∣∣∣∣∣
ξ=[χe]−1(z)

.

3.2 Implementation in One Dimension

3.2.1 Spectral Transforms

After establishing the form of our spectral expansion and a technique for performing nu-

merical integration, we now turn our attention to the process of transforming between

physical space and spectral space and ultimately to discretise linear operators. The final
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description will be in a matrix form which will be directly applicable to computational

implementations. First we define several important fundamental matrices on the stan-

dard element. Recall that a function on the standard element is discretised using Q

quadrature points and approximated by a basis of P polynomials in spectral space.

Definition (Basis MatrixB) The columns of the P×Q matrixB contain the evaluation

of the P basis functions, φj , at the Q quadrature points, ξi. That is, Bij = φj(ξi), and

it takes the form

B =


φ0(ξ0) · · · φP−1(ξ0)

...
...

φ0(ξQ−1) · · · φP−1(ξQ−1)

 .
Note In the case of the nodal Lagrange interpolated polynomial basis, Q = P + 1 for

convenience.

Definition (Weights Matrix W ) This is a diagonal matrix containing the quadrature

weights, wk, from Eqn. (3.4a) with elements defined as Wij = wiδij . Therefore,

W =


w0 0

. . .

0 wQ−1

 .
With these two operators, we can perform numerical integration and thus consider how

to perform forward and backward transforms between physical and spectral space on

the standard element.

Forward Transform

To perform the transform from physical space into spectral space the coefficients ûp

need to be computed.
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We continue our Galerkin formulation from Eqn. (3.3). Considering the RHS,

we apply the method of numerical integration defined in Eqn. (3.4a) to give

(φj(ξ), u(ξ)) =
∫

Ω̄
φj(ξ) · u(ξ)dx

=
∑
q

φj(ξq) · u(ξq) · wq

= φ>j Wu

=
(
B>Wu

)
[j]

where u is the vector of u(ξ) evaluated at the quadrature points and the [j] denotes

the jth column of the resulting matrix. For the LHS:(
φj(ξ),

∑
p

ûpφp(ξ)

)
=
∑
p

ûp(φj(ξ), φp(ξ))

= (B>WBû)[j].

Combining these, the coefficients, û, can be found by solving the matrix system

B>WBû = B>Wu = f .

Definition (Mass Matrix M) The mass matrix M is defined as

M = B>WB.

In general B is not square, whereas M is positive definite and thus non-singular.

The optimal structure for the mass matrix is diagonal. However, this needs to be weighed

up against the computational cost of constructing the matrix. Once a basis function

is defined and numerical integration has been implemented on the standard element,

creating the mass matrix and f is relatively straightforward.
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Backward Transform

From Eqn. (3.1), transforming the spectral mode coefficients back to physical space

involves only the trivial operation

u = Bû.

3.2.2 Discrete Derivative Operators

The techniques of numerical integration and differentiation in spectral space can be

combined to formulate a set of differential operators which will be used in the time

stepping of a particular PDE. The fundamental derivative matrix is defined, based on

the method of numerical differentiation described in the previous section. Translation of

the derivative matrix onto an arbitrary element is achieved through a diagonal coefficient

matrix used to apply the chain rule.

Definition (Differentiation Matrix D) The square Q × Q differentiation matrix D is

defined as

Dqr =
dhr(ξ)

dξ

∣∣∣∣
ξq

,

where hr(ξ) are the Q Lagrange interpolation polynomials through the Q quadrature

points ξq.

This is the fundamental matrix used to build discretised differential operators on the

standard element. To differentiate on any arbitrary element, we need to apply the chain

rule using a second matrix of coefficients.

Definition (Diagonal Coefficient Matrix Λ(f(ξ))) This matrix, denoted by Λ is defined

as

Λqr = f(ξq)δqr.

40



CHAPTER 3. NUMERICAL TECHNIQUES

De can now be defined for an arbitrary element as

De = Λ
(

dξ
dx

)
D.

We now have the necessary tools to define the familiar linear differential operators

required to solve PDEs on the standard element.

Weak advection operator: L(1) = ∇

This is represented in discrete form on the standard element as

L(1) = B>WDB.

This can be derived by differentiating Eqn. (3.1) and applying the Galerkin formulation

to give (
φj(ξ),

∂

∂ξ

∑
p

ûpφp(ξ)

)
=
∑
p

ûp

(
φj(ξ),

∂

∂ξ
φp(ξ)

)
= (B>WDBû)[j]

The operator for a general element can be derived simply through the use of the linear

map x = χ(ξ) and the chain rule in the derivative term.

Weak Laplacian operator: L(2) = ∇2

Consider the Laplacian operator ∇2. In applying the Galerkin construction to this

operator, the inner product (v,∇2u) is transformed into (∇v,∇u) using the Divergence

theorem. This allows us to simply apply the previous technique twice to obtain the

numerical form of the Laplacian. The Divergence Theorem equates the outward flux of

a vector field through a surface with the integral of the divergence within, and is quoted

below.
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Theorem 3.2.1. (Divergence Theorem) Let V be a compact subset of Rn with piecewise

continuous boundary. If F is a continuously differentiable vector field defined on a

neighbourhood of V , then ∫
V

(∇ · F )dV =
∫
∂V
F · ndS.

Using the vector identities, the above expression can be formulated in the fol-

lowing form. ∫
V
∇f · ∇gdV +

∫
V
g(∇ · ∇f)dV =

∫
dV
g∇fdS

Finally, formulating this as a matrix equation gives an expression for the Laplacian

operator,

L(2) = Γ− (DB)>W (DB)

Γj =
∫
∂Ω
φj∇u · ndξ.

We now have all the operators necessary to solve Helmholtz and Poisson problems which

are fundamental steps in the time stepping of the Navier-Stokes equations.

3.2.3 Global Assembly

A one-dimensional domain, Ω, is divided up into Ne elements, each expanded using an

expansion of P polynomials. The above fundamental matrices are constructed separately

on each element, and then combined using Global Assembly (sometimes known as Direct

Stiffness Assembly). This produces a global matrix system with Pg = Ne× (P − 1) + 1

modes. Global Assembly is performed through the use of a sparse assembly matrix A

which maps the block-concatenated local matrices into a global matrix. Given its sparsity

it is implemented as a mapping matrix, mapping local mode numbers onto global mode

numbers. In the one-dimensional formulation, this mapping is relatively straightforward
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due to the clear arrangement of the physical nodes and spectral modes in the system.

More details of the exact nature of A will be given in Sec. 3.3.1 in the context of the

two-dimensional case. We will work with the global system in what follows, denoting

such matrices using a subscript g.

3.2.4 Solving Linear Partial Differential Equations

We now describe how to apply the underlying discretisation, detailed in Sec. 3.1, to

solve a PDE. After discussing the procedure for constructing and assembling the time-

stepping algorithm, we will give a practical example by solving the heat equation. In

formulating the procedure, first consider the one-dimensional linear parabolic PDE

∂u(x)
∂t

=
∑
r

λr(x)Lru(x),with

Lr =
∂r

∂xr
.

To solve this problem numerically using a spectral element method, the equation must

be discretised in space and time. Initially the PDE is expressed in the weak Galerkin

form, (
v,
∂u

∂t

)
=
∑
r

λr (v,Lru)

for a function, v ∈ V, the test function space. For the Galerkin formulation of the

method of weighted residuals, the test space and trial spaces are the same subset of L2

and consequently both u and v are expanded in terms of the same basis φp(x). This

gives ∑
j

v̂jφj ,
∑
p

∂ûp
∂t

φp

 =
∑
r

λr

∑
j

v̂jφj ,
∑
p

ûpLrφp


∑
p

∑
j

v̂j (φp, φj)
∂ûp
∂t

=
∑
r

∑
p

∑
j

λrv̂j (φj ,Lrφp) ûp.
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This gives rise to the matrix system

v>g Mg
∂ûg

∂t
=
∑
r

λrv
>
g L

(r)
g ûg

or, more concisely,

∂ûg

∂t
= Fgûg

Fg = M−1
g

∑
r

λrL
(r)
g .

The effect of the choice of time discretisation on the stability of the numerical scheme is

well known. Notably, explicit schemes are associated with severe time-step restrictions.

To this end, multi-step time-discretisation schemes are considered. The generalised

S-step scheme can be applied to the linear PDE as follows

γ0û
n+1
g −

∑S−1
s=0 αsû

n−s
g

∆t
= Fg

S−1∑
s=0

βsû
n+1−s
g . (3.5)

From this we can identify four popular choices.

• Explicit Euler: γ0 = 1, α0 = 1, αs 6=0 = 0, β1 = 1, βs 6=1 = 0.

• Implicit Euler: γ0 = 1, α0 = 1, αs 6=0 = 0, β0 = 1, βs 6=0 = 0.

• Crank-Nicolson: γ0 = 1,α0 = 1, αs 6=0 = 0, β0 = 1/2, β1 = 1/2, βs 6=0 = 0.

• Second-order Adams-Bashforth: γ0 = 1, α0 = 1, αs 6=0 = 0, β1 = 3/2, β2 = −1/2

else βs = 0.

The explicit case introduces a time-step restriction, while the implicit scheme is not

so restrictive and works well for diffusive and forcing terms. Advective terms are more

susceptible to instability and so a higher order multi-step method should be used.

We will finally consider how to apply boundary conditions in our spectral element

formulation. To apply Dirichlet boundary conditions in a spectral element method, the
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most common procedure is to lift those modes which are non-zero at the boundary out

of the system. The (known) contributions of these boundary modes are then accounted

for in a reduced linear system. Thus, given the implicit system Agû
n+1
g = ûng of Pg

equations, the application of the boundary conditions is given by the reduced system of

Pg − 2 equations

Ãg
˜̂u
n+1
g = ˜̂u

n
g −

(
˜̂u
n+1
g [0]

)
α−

(
˜̂u
n+1
g [Pg − 3]

)
β

where ug[i] denote the ith entry of the vector u and α and β are the first and last

column of A as shown below.

Ag =



A0,0
g · · · A

0,Pg−1
g

α0

...

αPg−3

Ãg

β0

...

βPg−3

A
Pg−1,0
g · · · A

Pg−1,Pg−1
g


.

A description of the implementation of the 1D heat equation is given in App. B.

3.3 Formulation in 2-Dimensions

A spectral element method for two-dimensional domains can be formulated in a similar

manner to the one-dimensional case. However, there are some extra complications

introduced by the additional spatial dimension, which shall be addressed first. Such

complications are primarily concerned with the ordering of the nodes and modes within

the local and global context.

A two-dimensional mesh of elements gives rise to further geometric freedom

in the positioning of nodes and the arrangement of elements in a conformal or non-

conformal manner. A conformal mesh is one in which each element edge is shared
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with only one other element which results in typically regular grids of elements. A non-

conformal mesh is one in which an element may share one edge with multiple elements

and is relevant when implementing an elemental h-refinement algorithm. This technique

is commonly used to improve the accuracy of localised high-gradient solutions, such as

turbulence simulations (Henderson and Karniadakis [1995]), without requiring a high

resolution across the entire domain. The non-conformal method uses a general patching

technique which connects the solution on multiple subdomains separated by interfaces

(called patches) and placing no restrictions on the connectivity of the elements. The

ability to dynamically refine elements during the lifetime of a simulation is not essential

for the low to moderate Reynolds numbers considered in this thesis, and so we will

restrict the remaining discussion to the simpler conformal case.

3.3.1 Global Assembly

The synergy of polynomial expansions and elemental decomposition requires efficient

management of a solution on the domain. It is essential to define an orientation for each

element and a unique ordering for the various element components, such as quadrature

points and modes, both on a local and global scale. This requirement is of greater

importance in more complex higher dimensional formulations and so we now add rigour

to the brief description given in the one-dimensional case. We will describe the global

numbering of quadrature points only, since the elemental modes may be numbered in

an identical way.

Definition (Element orientation) An element, e, defined by four nodes e0, . . . , e3 has an

orientation as inferred by the primary coordinate direction, e0 → e1, and the secondary

coordinate direction, e0 → e3.
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Figure 3.3: Quadrature point ordering for a 2D element. Points are ordered as corners,
edges and then interior points.

Definition (Elemental ordering) Given an element, e, with fixed orientation, the local

elemental quadrature points are ordered as follows (see Fig. 3.3):

• e0, . . . , e3 (corner nodes);

• quadrature points ei,1, . . . , ei,Q−2 on edge i defined by nodes ei and ei+1;

• interior quadrature points with the fastest index being that of the primary coordi-

nate (see Fig. 3.3).

The assembly of two or more elements gives rise to a five-partition global classifi-

cation of points/modes, with the extra categories being a consequence of the distinction

between elemental boundary points on the domain boundary and those interior to the

domain which are common to two adjacent elements.

Definition In the same manner as for a single element the global ordering of elemental

quadrature points is defined as:

• surface corner points - element corner nodes on the boundary of the domain;

• surface edge points - element edge points on the boundary of the domain;
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Figure 3.4: Global ordering for a two-dimensional element. This shows the ordering of
quadrature points on a simplified mesh of four elements.

• interior corner points - element corner nodes interior to the domain;

• interior edge points - element edge points interior to the domain;

• element-interior points - all points interior to elements.

This choice of ordering brings several benefits to the efficiency of the two-dimensional

formulation. Primarily, it separates those nodes on which boundary conditions are im-

posed from those purely governed by the PDE. This is achieved by the lifting technique

described earlier. The global ordering is demonstrated graphically in Fig. 3.4.

Another benefit is in the computationally efficient construction of the numerical

system for time-stepping the PDE. The choice of global ordering produces a matrix
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system with the following structure.

MB MBC MBI

MBC MC MCI

MBI MCI MI


Only the domain-interior nodes need to be determined at each time step, and the

structure of MI is block diagonal due to the pairwise orthogonality of each set of

element-interior modes. This gives the potential to apply further numerical optimisation.

Finally, an assembly matrix is defined to translate between the local and global

formulations. Such a matrix in full would be very large and sparse and thus, for storage

and computational efficiency, this matrix is typically stored as a mapping array - spec-

ifying a global node/mode number for each local node/mode of each element, subject

to the local and global orderings outlined above. An algorithm for global assembly is

given in App. A.5.

3.3.2 Two-dimensional Quadrature Points and Modes

Before formulating the operators required for implementing a two-dimensional spectral

element solver we briefly clarify the notation for the two-dimensional quadrature points

and modes on the standard element. There are two coordinates (ξ1, ξ2) and a point is

denoted by the multi-index q, ξq=q(q1,q2) = (ξq1 , ξq2), and the modes, indexed by the

multi-index p, are formed as a tensor product of two sets of one-dimensional modes,

φp=p(p1,p2) = φp1φp2 .
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3.3.3 Integration and Differentiation in 2D

Integration in two dimensions has the same basic construction as the one-dimensional

formulation, with the exception that the summation indexes over two coordinates and

therefore there are two weightings, each one associated with the 1-D mode in the two

coordinates. ∫
Ω̄
u(ξ)dξ =

∑
q

wq1wq2u(ξq1 , ξq2),

wq =
∫

Ω̄
φq(ξ)dξ.

The construction of matrices to perform differentiation is complicated by the

move to two dimensions since a separate derivative matrix is required to differentiate

in each direction. The matrices D1 and D2 store the derivative of each Lagrange

interpolation function, hr, (through the quadrature points) at each of the quadrature

points, q, on the standard element. The matrix D1 and D2 are constructed as

D1[q(q1, q2)][r(r1, r2)] =
dhr1(ξ)
dξ1

∣∣∣∣
ξq1

hr2(ξq2),

D2[q(q1, q2)][r(r1, r2)] = hr1(ξq1)
dhr2(ξ)
dξ2

∣∣∣∣
ξq2

.

3.3.4 Spectral Transforms and Operators in Two Dimensions

As with the one-dimensional formulation, two fundamental matrices are needed to allow

the transform to and from spectral space, in addition to the ability to perform numer-

ical integration. Assuming these operators are constructed in the self-consistent way

described below, a full spectral element time-stepping system can be constructed in

exactly the same way as before.

The elements of the basis matrix B[p][q] are the evaluation of each of the basis

polynomials φp at the point q. This matrix is of size P 2 ×Q2. The P 2 modes and Q2
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nodes are ordered as per the global mode and node orderings, respectively.

B[p][q] = φp1(ξq1)φp2(ξq2)

The procedure to integrate in two dimensions is virtually identical to that in one

dimension. The elemental mapping for a two-dimensional element is, however, slightly

less trivial than that for a one-dimensional element. The Gaussian quadrature weights

are multiplied by the Jacobian determinant of the elemental mapping. Therefore,

W [q][r] = W [q1][q1] ·W [q2][q2] · J(ξq1 , ξq2)δqr.

The weights are ordered using the same nodal ordering to correspond to B.

3.3.5 Derivative Operators

The Laplacian operator seen previously can be expressed in the form of 2D local coor-

dinates as

(∇u,∇v) =
(
∂v

∂ξ1
,
∂u

∂ξ1

)
+
(
∂v

∂ξ2
,
∂u

∂ξ2

)
.

The operators ∂
∂ξ1

and ∂
∂ξ2

will be represented by the matrices D1 and D2 respectively.

These operate on a solution in physical space, so to differentiate a function represented

in spectral space, we would use D1B and D2B. These can be used to construct, for

example, the Laplacian operator,

L(2) = (D1B)>W (D1B) + (D2B)>W (D2B)

on the standard element, which differentiates in both coordinate directions.
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Derivative Operators on Arbitrary elements

Now consider applying the chain rule to the gradient operator

∇ =

 ∂
∂x1

∂
∂x2

 =

 ∂ξ1
∂x1

∂
∂ξ1

+ ∂ξ2
∂x1

∂
∂ξ2

∂ξ1
∂x2

∂
∂ξ1

+ ∂ξ2
∂x2

∂
∂ξ2


=

 ∂ξ1
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2


 ∂

∂ξ1

∂
∂ξ2

 .
The Laplacian operator on an arbitrary element can be expressed as

(∇u,∇v) =
(
∂v

∂x1
,
∂u

∂x1

)
+
(
∂v

∂x2
,
∂u

∂x2

)
.

The chain rule is used to translate the differentiation operators constructed for the

standard element onto an arbitrary element, giving

(∇u,∇v) =
(
∂ξ1

∂x1

∂v

∂ξ1
+
∂ξ2

∂x1

∂v

∂ξ2
,
∂ξ1

∂x1

∂u

∂ξ1
+
∂ξ2

∂x1

∂u

∂ξ2

)
+
(
∂ξ1

∂x2

∂v

∂ξ1
+
∂ξ2

∂x2

∂v

∂ξ2
,
∂ξ1

∂x2

∂u

∂ξ1
+
∂ξ2

∂x2

∂u

∂ξ2

)
.

Computationally, this means that the derivative matrices D1 and D2 are pre-multiplied

by diagonal matrices of the form Λ
(
∂ξk
∂xl

)
. These represent a diagonal matrix of a

derivative of the element map, evaluated at the quadrature point (ξq1 , ξq2) and take the

form

Λe
k,l[q][r] = Λe

(
dξk
dxl

)
[q][r] =

dξk
dxl

∣∣∣∣
(ξq1 ,ξq2 )

δbmqr.

This gives rise to the matrix form of the Laplacian,

Le =
[(

Λe
1,1D

e
1 + Λe

2,1D
e
2

)
Be
]>
W e

[
Λe

1,1D
e
1 + Λe

2,1D
e
2

]
Be

+
[(

Λe
1,2D

e
1 + Λe

2,2D
e
2

)
Be
]>
W e

[
Λe

1,2D
e
1 + Λe

2,2D
e
2

]
Be. (3.7)
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Ω∂Ωi ∂Ωo

flow

Figure 3.5: Diagram of the copy boundary condition. The inlet boundary ∂Ωi is assigned
the field values from a cross section of the domain downstream of the inflow, enforcing
a periodic section at the start of the domain.

3.4 Copy Boundary Condition

The generation of turbulence by direct numerical simulation in a shear flow requires

significant simulation time to allow the flow to transition from a laminar initial condition

to the turbulent regime. This can be achieved relatively inexpensively in a domain with

periodic boundaries, but much less so in one with in-flow and out-flow boundaries. This

is because in these circumstances a long inflow is required prior to the region of interest

to allow a steady inflow velocity profile to transition to a fully turbulent state. This

drastic increase in domain size is costly in terms of the computational requirements.

To facilitate the simulation of turbulent flows in arbitrary geometries, we im-

plement a new boundary condition to the existing numerical code base to generate a

time-dependent turbulent velocity field at the inlet. The source of the inflow boundary

data should in principle be the outflow of a separate periodic domain in which a turbulent

flow is maintained. Equivalently, the boundary data can replicate a slice through the

domain at a position downstream of the inlet, with the enclosed region being initialised

with a fully-developed turbulent flow (see Fig. 3.5). The result is a pseudo-periodic

section in which turbulent flow is maintained while simultaneously driving the flow in

the downstream part of the domain. The entire flow is driven by either a constant body

force per unit mass, or a method of flowrate control if available.
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<BCS>
1 c 4

<C> u = (1 , 4 , 1 0 , 2 ) ( 21 , 4 , 3 0 , 2 ) ( 41 , 4 , 5 0 , 2 ) ( 61 , 4 , 7 0 , 2 ) </C>
<C> v = (1 , 4 , 1 0 , 2 ) ( 21 , 4 , 3 0 , 2 ) ( 41 , 4 , 5 0 , 2 ) ( 61 , 4 , 7 0 , 2 ) </C>
<C> w = (1 , 4 , 1 0 , 2 ) ( 21 , 4 , 3 0 , 2 ) ( 41 , 4 , 5 0 , 2 ) ( 61 , 4 , 7 0 , 2 ) </C>
<C> p = (1 , 4 , 1 0 , 2 ) ( 21 , 4 , 3 0 , 2 ) ( 41 , 4 , 5 0 , 2 ) ( 61 , 4 , 7 0 , 2 ) </C>

. . .
</BCS>

Figure 3.6: Example of a copy boundary condition session file entry. This indicates that
all four fields on the domain surfaces belonging to group c have their boundary values
imposed by downstream data. In this example, the inlet is side 4 of elements 1, 21, 41
and 61, and the values are copied from side 2 of elements 10, 30, 50 and 70.

3.4.1 Implementation

Implementation is achieved through the creation of an additional boundary condition

and, due to the modular nature of the existing software, it is easily integrated into

the code base. Unlike the other types of boundary conditions which impose a single

boundary value or analytic function, the copy boundary condition requires an element-

side mapping as a parameter. Specifying element-side mappings ensures the velocity

data can be extracted directly from the solution fields without needing computationally

expensive data interpolation at every time step. Furthermore, unlike the other existing

boundary conditions, the copy boundary condition requires access to the full field data.

A copy boundary condition is specified using a sequence of quartets (ed, sd,

es, ss) mapping side ss of element es to side sd of element ed. Figure 3.6 shows

an example session file entry. We now present the implementation of the boundary

condition itself. The EssentialCopy class is derived from the base Condition

class and applies a boundary condition in the context of a single element edge.
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Locating the source data

A code excerpt for computing the location within the data field of the source data

is given in Fig. 3.7. This is an auxiliary routine for the code given in Fig. 3.8. The

applicable mapping information (src id, src side), in the context of side S of

element E, is first retrieved from the list of mappings, mappings, before the start

point and stride are computed based on the source element ID and source edge. The

mapping information is set in the class constructor prior to time stepping.

Retrieving the boundary data

The boundary is time dependent and evaluated at every time step. The routine for

retrieving the boundary data from the solution of the previous timestep and placing

into external storage is shown in Fig. 3.8. A further optimisation is made here by

allowing boundary conditions to be either evaluated in physical space (such as standard

Dirichlet/Neumann conditions) or in Fourier space (denoted with the suffix F in the

routine shown). Since the majority of the time stepping is performed in spectral space,

this eliminates the need to transform the data fields to physical space prior to evaluating

this boundary condition. Other boundary conditions, which must be evaluated in physical

space, are applied to the external storage area first. This is then transformed before the

copy boundary condition is applied.

Applying the boundary data

The boundary data in external storage is applied to the domain during the final Helmholtz

solve of the multi-step scheme using the routine in Fig. 3.9. The Veclib::scatr

routine distributes the values in external storage, src, to the field storage using the

boundary map, bmap.
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void EssentialCopy : : computeOffset ( const int_t np ,
const Element∗ E ,
const int_t S ,
int_t& src_offset ,
int_t& src_skip ) const

{
const char routine [ ] = "EssentialCopy::computeOffset" ;

int_t dst_id = E−>ID ( ) ;
int_t src_id = −1;
int_t src_side = −1;
for (unsigned int i = 0 ; i < _mappings . size ( ) ; ++i ) {

if (_mappings [ i ] . mBCElmt−>ID ( ) == dst_id
&& _mappings [ i ] . mBCSide == S ) {

src_id = _mappings [ i ] . mSrcElmt−>ID ( ) ;
src_side = _mappings [ i ] . mSrcSide ;
break ;

}
}
if (src_id == −1)

message (routine , "can’t find element to copy from" , ERROR ) ;

src_offset = (src_id )∗np∗np ;
src_skip = 1 ;

switch (src_side ) {
case 0 : src_offset += 0 ; src_skip = 1 ; break ;
case 1 : src_offset += np − 1 ; src_skip = np ; break ;
case 2 : src_offset += np ∗ (np − 1 ) ; src_skip = 1 ; break ;
case 3 : src_offset += 0 ; src_skip = np ; break ;
default :

char err [ 2 5 6 ] ;
sprintf (err , "cannot construct edge %1d" , src_side ) ;
message (routine , err , ERROR ) ;

}
}

Figure 3.7: Code excerpt of the source data location routine. This computes the position
of the source data for the target element boundary associated with this instance of the
class.
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void EssentialCopy : : evaluateF (const int_t np ,
const int_t id ,
const int_t nz ,
const Element∗ E ,
const int_t S ,
const int_t step ,
const real_t∗ nx ,
const real_t∗ ny ,
real_t∗ tgt ,
const real_t∗ data ,
char name ) const

{
const char routine [ ] = "EssentialCopy::evaluate" ;

int_t src_offset = 0 ;
int_t src_skip = 1 ;
int_t dst_skip = 1 ;

computeOffset (np , E , S , src_offset , src_skip ) ;

const int_t nplane = Geometry : : planeSize ( ) ;
const real_t ∗src = data + src_offset + nz∗nplane ;

// Reve r s e o r d e r i f t a r g e t i s the 3 rd or 4 th s i d e .
if (side > 1) dst_skip = −1;

Veclib : : copy (np , src , src_skip , tgt , dst_skip ) ;
}

Figure 3.8: Code excerpt of the source data retrieval routine. This extracts the
boundary data from the field and places it into the external boundary storage. The
Veclib::copy routine performs a strided memory copy, but also accounts for the
orientation of the destination and source elements.
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void EssentialCopy : : set (const int_t S ,
const int_t∗ bmap ,
const real_t∗ src ,
real_t∗ tgt ) const

{
const int_t nm = Geometry : : nP ( ) − 1 ;
const int_t∗ start = bmap ;

switch (S ) {
case 1 : start += nm ; break ;
case 2 : start += nm + nm ; break ;
case 3 : start += nm + nm + nm ; break ;
default : break ;
}

Veclib : : scatr (nm , src , start , tgt ) ;
if (side == 3) tgt [ bmap [ 0 ] ] = src [ nm ] ;
else tgt [ start [ nm ] ] = src [ nm ] ;

}

Figure 3.9: Code excerpt of the routine to apply the boundary condition. This applies
the boundary data in external storage to the global data field boundaries using the global
boundary map.

3.4.2 Example

As an example to demonstrate the use of the copy boundary condition we apply it to a

non-periodic pipe of length L = 30D. In this example the left boundary (inflow) uses

the new boundary condition to duplicate the velocity and excess pressure fields at the

location 5D downstream of the inlet. The right boundary (outflow) is a standard stress-

free outflow boundary condition. The flow field in the 5D periodic section is initialised

from a turbulent flow (generated using a 5D periodic pipe) and a constant body force

is applied to drive the flow. Figure 3.10 shows transverse velocity magnitude

q(x, r) =
√
u2
r + u2

θ (3.8)

at four time instances. These images show clearly the effect of the copy boundary

condition, with the periodicity being lost downstream. This will be used in Chapter 6.
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Figure 3.10: Example flow using the copy boundary condition. Transverse velocity mag-
nitude of four snapshots of flow through a periodic pipe of length L = 30D at Re=3000
is shown. It employs the copy boundary condition around the first 5D upstream. Up-
stream the flow is strongly periodic, but 20D downstream it has lost this periodicity.
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3.5 Numerical Schemes for the Incompressible Navier-Stokes

Equations

The unsteady incompressible Navier-Stokes equations enforce the fundamental laws of

conservation of mass and conservation of momentum on a fluid. While there have been

many numerical algorithms devised for time-stepping the Navier-Stokes equations, we

choose to focus on the stiffly-stable multi-step formulation described in Orszag et al.

[1986] and Karniadakis et al. [1991]. The stiffly-stable aspect of such a scheme is

essential to ensure the stability of the algorithm when using higher-order integration.

This is also the formulation employed by the code-base used for the numerical results

presented throughout this thesis.

3.5.1 Derivation

In general, split-step methods break up the action of a single time-step operation into

a series of sub-steps. Specifically, these are for the non-linear advection, pressure and

viscous terms, each requiring a correct choice of boundary conditions. Furthermore,

the final velocity field at the end of the time step should satisfy the divergence-free

condition. The scheme we follow is termed a pressure correction scheme as the pressure

is chosen in such a way so as to ensure the velocity field satisfies the divergence-free

condition at the end of the time-step.

We begin with the unsteady incompressible Navier-Stokes equations from Eqns. (1.1)

which we restate here for convenience.

∂ut + (u · ∇)u = −1
ρ
∇p+Re−1∇2u,

∇ · u = 0.
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Integrating in time over a single time step results in the semi-discrete form

un+1 − un = −
∫ tn+1

tn

∇p dt+Re−1

∫ tn+1

tn

∇2u dt−
∫ tn+1

tn

(u · ∇)u dt

from which we formulate the three sub-steps to evaluate the three integrals on the RHS.

An explicit-implicit scheme is used. The non-linear term (u·∇)u is approximated

using an explicit scheme which, while imposing a time-step restriction to satisfy stability

requirements, reduces the computational cost when compared to an implicit formulation.

The scheme typically used is one from the Adams-Bashforth family of a prescribed order

Ne. This gives a discretisation of the non-linear term as∫ tn+1

tn

(u · ∇)u dt = ∆t
Ne−1∑
i=0

βi(un−i · ∇)un−i

where the βi’s are the appropriate weights for the chosen order (see Gear [1971]).

The linear viscous term can be handled using an implicit scheme, namely one

from the Adams-Moulton family of order Ni,∫ tn+1

tn

∇2u dt = ∆t
Ni−1∑
i=0

γi∇2un−i.

Finally, the pressure term can be expressed as:∫ tn+1

tn

∇p dt = ∆t∇p̄n+1

where p̄n+1 is a pressure field computed such that the velocity field is satisfies the in-

compressibility constraint. Combining these approximations gives a full splitting scheme

for time-stepping the incompressible Navier-Stokes equations on a domain Ω.

û− un

∆t
= −

Ne−1∑
j=0

βj(un−j · ∇)un−j

ˆ̂u− û
∆t

= −∇p̄n+1

un+1 − ˆ̂u
∆t

= Re−1
Ni−1∑
j=0

γj∇2un+1−j
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with Dirichlet boundary condition

un+1
∣∣
∂Ω

= u0
∣∣
∂Ω

and satisfying∇· ˆ̂u = 0. The above discretisation, in principle, gives high-order accuracy.

However, the nature of the Navier-Stokes equations leads to two problems with using

this classical scheme:

• poor stability at high order;

• specifying the boundary condition for the pressure substep.

3.5.2 Stiff Stability

Stiff stability has its origins in chemical kinetics and other systems of equations which

are characterised by greatly differing timescales (Gear [1971]). For example consider a

system of equations such as

∂tu = Mu

which has solutions ui = cie
λit for eigenvalues λi. If the choice of M is such that

the λi are all negative and cover a range of magnitudes, the different components of

the solution will decay at vastly differing rates. Those which decay fast will control

the stability of the solution. After a short time, those components will have decayed to

insignificant values, but force a short time step to be taken, even though they contribute

no significant information to the system.

Stiffly-stable schemes are typically achieved through discretisation using back-

ward differentiation. A stable discretisation of the Navier-Stokes equations is given in

Karniadakis et al. [1991] as:

γ0u
n+1 −

∑Ni−j
j=0 αju

n−j

∆t
= −∇p̄n+1 −

Ne−1∑
j=0

βj(un−j · ∇)un−j +Re−1∇2un+1.
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Note that the βj ’s differ from those explicit coefficients used earlier. This results in the

multi-step scheme

un+1 −
∑Ni−1

j=0 αju
n−j

∆t
= −

Ne−1∑
j=0

βj(un−j · ∇)un−j

ˆ̂u− û
∆t

= −∇p̄n+1

γ0u
n+1 − ˆ̂u
∆t

= Re−1∇2un+1

3.5.3 Pressure Correction Substep

Early approaches made assumptions about intermediate velocity field ˆ̂u, assuming that

• it is incompressible: ∇ · ˆ̂u = 0;

• and that it satisfies the Dirichlet boundary condition: ˆ̂u · n = u0 · n.

Consequently, the pressure term p̄n+1 can be found by taking the divergence in the

second step.

∇ ·
(
û

∆t

)
= ∇2p̄n+1 in Ω

∂p̄n+1

∂n
= −u

0 · n− û · n
∆t

on ∂Ω

However, the second condition is not exactly true. The correct term for the pressure

boundary, derived from the splitting scheme, is:

∂p̄n+1

∂n
= n ·

[
Ne−1∑
i=0

βi(un−i · ∇)un−i +
Ni−1∑
i=0

γi∇2un−i

]

While this now correctly evaluates the pressure on the boundary, it is implicit and

consequently couples the equations. Furthermore, it can not be replaced with an explicit

scheme as this is numerically unstable.
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The solution is to use the high-order pressure boundary condition described in

Orszag et al. [1986] and Karniadakis et al. [1991] which proceeds by splitting the implicit

linear viscous term into an irrotational part and a solenoidal part.

∂p̄n+1

∂n
= n ·


Ne−1∑
i=0

βi(un · ∇)un + ν

Ni−1∑
i=0

γi∇Qn+1−q

︸ ︷︷ ︸
Irrotational part

+ ν

Ne−1∑
i=0

βi
(
−∇×

(
∇× un−i

))
︸ ︷︷ ︸

Solenoidal Part


The solenoidal part is treated explicitly, and the irrotational part implicitly. However, the

incompressibility condition makes Qn+1 = 0, decoupling the equations. This boundary

condition is applicable to both schemes above with the coefficients βi matching those

in the chosen scheme.

3.5.4 Flowrate control

An ideal fluid is governed by laws which conserve both mass and momentum. The

scalar pressure, p, describes the force exerted on a small unit of fluid by the surrounding

fluid. At its most fundamental level the movement of fluid particles occurs due to a

pressure gradient, ∇p, which drives fluid from the areas of high pressure to those of lower

pressure. When time stepping the Navier-Stokes equations, this gradient is computed so

as to make the pressure field match the velocity boundary conditions, particularly those

applied to the inflow. This causes complications when a periodic boundary condition is

required in the streamwise direction.
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3.5.5 Streamwise Periodic Boundaries

In this circumstance, there is no condition to impose fluid flow in the domain (such as the

fixed Dirichlet inflow in a non-periodic domain). Consequently, a zero flow will remain

at rest, and a flow initially in motion will quickly lose momentum due to viscosity and

lack of a pressure gradient. There are in general two methods to handle this problem:

• Enforce a pressure gradient. This essentially involves setting a non-zero forcing

term, f , in the Navier-Stokes momentum equation,

∂ut + (u · ∇)u = −∇p+ ν∇2u+ f ;

• Fix the flowrate, through the linear superposition of a Greens, ug, function with

the solution,

∂ut + (u · ∇)u = −∇p+ ν∇2u+ αug.

The choice of which method to use depends on the flow regime. For an elementary

laminar pipe flow, a pressure gradient is the most effective solution. The forcing term is

computed as 32/Re. However, in the turbulent regime the pressure is necessarily higher

and may fluctuate making a fixed gradient insufficient and it is necessary to use dynamic

flowrate control.

The flowrate, Q(u), is defined as the flux of fluid through a cross-sectional slice,

∂Ω, and is given by

Q(u) =
∫
∂Ω
ux dΩ.

To control the flowrate at each timestep, the principle of superposition is exploited to

compensate for any deviation of the flowrate from the target, Q. This is a Green’s

function (typically the Stokes flow), which is precomputed at the beginning of the
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computation. For a Stokes flow the non-linear term of the Navier-Stokes momentum

equation is zero, leaving the linear equation

∂ug
∂t

= −∇p+ ν∇2ug

and so for any solution, u, to the Navier-Stokes equations, u+ ug is also a solution.

The Stokes flow, ug, is used at the end of each timestep to augment the true

flow field and achieve the target flowrate, such that

Q(ˆ̂u+ α(t)ug) = Q.

This necessitates the computation of α(t) at each time step as

α(t) =
Q−Q(ˆ̂u)
Q(ug)

.

3.6 Eigenvalue Computation

In this section we present an overview of the method used for determining eigenvalues.

Throughout the history of computational linear algebra many computationally efficient

algorithms have been devised which can exploit various properties of the matrix to which

they are applied. In this thesis we concentrate on iterative power methods. The reasons

for this are three-fold:

• The dense matrix corresponding to our typical operator, A, lacks structure and

usually has O(105) degrees of freedom, which makes computing the full spectrum

particularly challenging.

• A full matrix corresponding to A is not directly available in the time-stepping code

(due to the multi-step methodology).

• We are only interested in the most dominant eigenvalue/eigenvector pairs.
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Iterative power methods overcome these issues by not requiring an explicit matrix to

work on, but merely knowledge of the “effect” of the action of the matrix. The specific

algorithm employed for computing eigenvalues is based on the Arnoldi method (Arnoldi

[1951]). This is a generalisation of the Lanczos method for symmetric matrices, but will

allow us to solve both the symmetric transient growth problems and the unsymmetric

global stability problems with the same code.

For a matrix M (which may be a discretisation of A(τ) or A∗(τ)A(τ)), the

Arnoldi algorithm extracts the most dominant behaviour of the operator from a se-

quence of vectors obtained by repeated application of the target operator to a starting

vector. This sequence spans a Krylov subspace and the algorithm essentially performs

a partial Hessenberg reduction of M to allow the efficient calculation of the leading

eigenvalue/eigenvector pairs.

Definition (Krylov Subspace) Given M ∈ Rn×n and a vector u ∈ Rn, the Krylov

k-subspace Kn(M ,u, k) generated by M is

Kn(M ,u, k) = span{u,Mu,M2u, . . . ,Mk−1u}.

Using this Krylov sequence, the operator M can be approximated by a low-rank Hes-

senberg matrix according to the following theorem.

Theorem 3.6.1. Given a matrix M ∈ Rn×n, there exists an orthogonal matrix Q ∈

Rn×n and a matrix H in Hessenberg form such that

M = QHQT .

Proof. A proof and suitable algorithm is given in Golub and Van Loan [1996].

As a corollary to this theorem, we find the eigenvalues of H are equal to those

of M .
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Corollary 3.6.2. M and H are similar matrices and their eigenvalues are the same.

Proof. Clearly, Q has full column rank since its columns form a basis. Thus, by definition

of similar matrices M and H must be similar. From Theorem 3.6.1,

MQ = QH ⇒ λ(M) = λ(H).

Of course in practice, we would not wish to compute H to the same rank as

M . Instead, the principle of the Arnoldi method is to construct the matrix Q column-

by-column until the eigenvalues of Hk = QkMQ>k approximate those of M . In the

kth iteration Qk ∈ Rn×k, Hk ∈ Rk×k and

MQk = QkHk + rke>k .

The value of rk characterises how far the matrix M lies from the invariant space of H.

If rk = 0 then

λ(H) ⊆ λ(M).

Invariably, rk < ε for some tolerance ε and consequently the eigenvalues of H are an

approximation of the leading eigenvalues of M .

We now detail the algorithm used to perform the Hessenberg reduction and

extract the most dangerous eigenvalues to linear stability. To achieve this in practice,

we consider our Krylov sequence as a matrix with columns u0, . . . ,uk−1.

Tk = [u0,u1, . . . ,uk−1]

where each normalised entry is computed as ui = Mui−1/||Mui−1||. We now follow

the methodology of Barkley et al. [2008] and manipulate the governing equation which

defines a Krylov sequence,

MTk = Tk+1D,
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where D ∈ R(k+1)×k having all entries zero except for suitable normalisation factors on

the first sub-diagonal, and keeps all but the first column of Tk+1. After replacing the

T matrices with their QR factorisation, M can be expressed as

M = Qk+1Rk+1DR
−1
k Q

−1
k ,

and we define G ∈ R(k+1)×k as G = Rk+1DRk. The last row of G contains exactly

one non-zero entry, gk,k−1, which can be separated from the system to leave H = G[0 :

k− 1, :] ∈ Rk×k, an upper Hessenberg matrix containing all but the last row of G. The

expression for M then becomes

M = QkHkQ
−1
k + gk+1,kqk

This is the Hessenberg decomposition required and its structure is ensured by the com-

bination of the upper triangular Rk+1 and the lower diagonal D. The residual term,

gk,k, provides a measure of the accuracy of the action of the Hessenberg matrix to the

action of the original matrix, M . In fact the terms of the matrix H can be computed

explicitly using the expression

hi,j =
1
rj,j

(
αj+1ri,j+1 −

j−1∑
l=0

hi,lrl,j

)
,

from the QR factorisation and scaling factors αj (see Barkley et al. [2008] for details).

The eigenvalues of the matrix H approximate the leading eigenvalues of M . Since H is

of comparatively very low rank, these eigenvalues can be computed trivially. Approxima-

tions to the full eigenvectors, V , can then be obtained from the low-rank eigenvectors,

Ψ, using Vi = QkΨi for those Ψi whose residuals have fallen below a set tolerance.

The Krylov sequence at the k-th iteration, Tk, consists of the initial condition

along with k − 1 applications of the operator M . In practice, we keep only a limited

number of vectors from the sequence, discarding the oldest vector each time when
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this limit is reached. This is synonymous with using a restarting technique, since the

Hessenberg matrix is computed in full after each iteration.

This algorithm to compute the eigenvalues is particularly efficient with the bulk

of the computational effort lying in the evaluation of the operator to create the Krylov

sequence. The Arnoldi algorithm is, however, particularly susceptible to the choice of

initial condition (Golub and Van Loan [1996]) as initial conditions which lie orthogonal,

or almost orthogonal, to the most dominant eigenvectors will result in a sequence poorly

portraying the action of the operator. This is improved by discarding old vectors and

limiting the size of the sequence, since numerical noise alone will eventually allow the

sequence to effectively represent the most important characteristics of the operator.

3.6.1 Eigenvalue Deflation

We now turn our attention to the process of finding the sub-dominant eigenvalues of

an operator. The algorithm outlined above will converge onto the leading eigenvalue

without great difficulty. However, it may struggle to converge further eigenvalues of the

system due to the effective resolution of the algorithm. This is especially true if the

separation of the dominant eigenvalues is small, whereby the leading eigenvalues are

difficult to distinguish from each other. Increasing the size of the Krylov subspace may

provide a limited improvement, but the additional information regarding the action of

M will still be overwhelmed by the most dominant eigenvectors. A solution is to filter

out the eigenvectors already computed to expose the next most dominant eigenvectors.

Eigenvalue deflation is a procedure which allows the extraction of sub-dominant

eigenvalue/eigenvector pairs in an iterative procedure by filtering out the contribution of

the dominant (previously computed) eigenvectors from the system. We will first provide

an overview of the algorithm followed by further details on the implementation.
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We determine the contribution of each computed eigenvector to each of the

vectors in the Krylov sequence by projecting the columns of Tk onto each eigenvector in

turn. With this information, we then project the Krylov space onto a space orthogonal to

that spanned by the computed eigenvectors. The iterative process will then continue to

converge onto the next most dominant eigenvalue, that is, the most dominant eigenvalue

in the orthogonal space, until the required N eigen-pairs have been computed.

Consider the Krylov sequence Tk = [u0, . . . ,uk−1] and the sequence of previ-

ously computed eigenvectors Vm = [v0, . . . ,vm−1]. Define W ∈ Rk×m as Wi,j =

〈ui,vj〉. These factors describe the magnitude of the contribution of each eigenvector

to the vectors in the Krylov sequence.

On each iteration of the power method above, prior to computing the Hessen-

berg matrix H, the factor matrix W is computed and the eigenvalue deflation is then

performed using the operation

Tk = Tk − VmW .

The Arnoldi process then continues to estimate λm+1 and vm+1. Upon convergence of

a new eigenvector, it is appended as an additional column to the matrix V for use in

future iterations and the process continues while m < N .

Eventually numerical errors in the application of M will introduce noise which

will sufficiently excite the filtered eigenvectors so as to reduce the effectiveness of the

procedure. However, for the particular problems under consideration, it should be possi-

ble to attain at least a dozen of the dominant eigenvalues to sufficient accuracy before

this becomes an issue.

71



CHAPTER 3. NUMERICAL TECHNIQUES

static void EV_project (real_t∗ vec , real_t∗ evec , ostream& runinfo ) {
const int_t ND = Geometry : : nPert ( ) ;
const int_t NP = Geometry : : planeSize ( ) ;
const int_t NZ = Geometry : : nZ ( ) ;
const int_t ntot = ND∗NP∗NZ ;
const int_t npnp = Geometry : : nTotElmt ( ) ;
int_t i = 0 ;

// Set o f domain e l ement s
vector<Element∗> elmt = domain−>elmt ;

// I t e r a t e ove r e l ement s and sum up L2 i n n e r p roduc t c o n t r i b u t i o n
// from each one .
real_t∗ f = evec ;
real_t∗ g = vec ;
real_t factor = 0 . 0 ;
real_t q1 = 0 . 0 ;
for (i = 0 ; i < elmt . size ( ) ; ++i , f += npnp , g += npnp ) {

factor += elmt [ i ] −> innerProd (f , g ) ;
q1 += elmt [ i ] −> innerProd (f , f ) ;

}

// s u b t r a c t o f f p r o j e c t e d qu an t i t y o f o r i g i n a l e i g e n v e c t o r
Blas : : axpy (ntot , −factor/q1 , evec , 1 , vec , 1 ) ;

}

Figure 3.11: Code excerpt to perform eigenvalue projection. The code first computes the
projection of the vector vec onto a second vector evec. The result is then subtracted
from vec. In deflation terms, it computes the magnitude, 〈ui,vi〉, of the contribution
of an eigenvector, vi, to a vector from the Krylov sequence, ui.

Implementation

Implementation of the eigenvalue deflation algorithm requires relatively trivial modifi-

cations to the outer level eigenvalue code which make use of an additional routine to

perform the removal of an eigenvalues contribution to a vector (see Fig. 3.11). For each

vector appended to the Krylov sequence, this routine is used to remove the contributions

of the previously computed eigenvalues:

for (j = 0 ; j < outvecs ; j++) {

EV_project (Kseq [ kdim ] , Oseq [ j ] , runinfo ) ;

}

Upon convergence of an eigenvector, a similar code fragment is used to project out

the contribution of the newly computed eigenvector from all the vectors in the Krylov
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sequence.

for (j = 0 ; j <= min (i , kdim ) ; ++j ) {

EV_project (Kseq [ j ] , Sseq [ 0 ] , runinfo ) ;

}

After the required number of eigenvectors have been computed, the algorithm termi-

nates, as per the original algorithm. Note that in the deflation algorithm there is no

requirement that the size of the Krylov sequence matches or exceeds the number of

eigenvectors required since the algorithm is, in essence, only computing one eigenvector

at any one time.

This concludes our review of numerical techniques which, along with the stability

formulations described in Chapter 2, to the first of two problems - flow through a sudden

axisymmetric expansion.
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Chapter 4

Transient Growth Analysis of Flow

through a Sudden Expansion in a

Circular Pipe

4.1 Introduction

The dynamics of flow through abrupt geometrical expansions is of both practical impor-

tance and fundamental interest. The axisymmetric expansion (Back and Roschke [1972];

Furuichi et al. [2003]; Hammad et al. [1999]; Latornell and Pollard [1986]; Mullin et al.

[2009]; Teyssandier and Wilson [1974]), in particular, is a primitive geometry occurring in

numerous engineering and industrial settings. It is also relevant to bio-medical applica-

tions as a model of flow through arterial stenoses (Blackburn et al. [2008b]; Sherwin and

Blackburn [2005]; Blackburn and Sherwin [2007]; Bertolotti et al. [2001]; Griffith et al.

[2008]). At a fundamental level this geometry, together with the closely related planar

expansion (Acrivos and Schrader [1982]; Durst et al. [1993]; Fearn et al. [1990]) and
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backward-facing step (Kaiktsis et al. [1991, 1996]; Barkley et al. [2002]; Beaudoin et al.

[2004]; Blackburn et al. [2008a]), serve as prototypes for understanding the dynamics of

flow separation. Over the past four decades studies of these flows have addressed issues

such as reattachment lengths (Back and Roschke [1972]), symmetry breaking (Mullin

et al. [2009]), and time-dependence (Sreenivasan and Strykowski [1983]).

The focus of this paper is the transient linear dynamics of the 1 to 2 axisymmetric

expansion. We show that for values of the Reynolds numbers well below any linear

instability, the flow strongly amplifies infinitesimal inlet perturbations. We argue that

transient linear amplification is a potentially more important effect in this flow than

linear instability.

Much of the previous research on the axisymmetric expansion has concentrated

on the steady, laminar flow regime and the accurate determination of the separation

and subsequent reattachment. Both experimental (Macagno and Hung [1967]; Back

and Roschke [1972]; Sreenivasan and Strykowski [1983]; Latornell and Pollard [1986];

Hammad et al. [1999]; Furuichi et al. [2003]; Mullin et al. [2009]) and computational

(Macagno and Hung [1967]; Pollard [1981]; Badekas and Knight [1992]) studies find that

the reattachment length varies linearly with Reynolds number in the steady regime, with

the proportionality depending on whether the inlet flow is a flat profile or a fully developed

Hagen–Poiseuille profile (Roschke and Back [1976]). Separation and reattachment in

the turbulent regime has also been studied (Acrivos and Schrader [1982]; Tinney et al.

[2006]).

Recent and carefully controlled experiments by Mullin et al. [2009] on the 1 to

2 expanding pipe flow with a fully developed inlet profile report a steady-state breaking

of axisymmetry at Re = 1139 ± 10. The Reynolds number is defined in terms of

the inlet diameter and bulk velocity. This symmetry breaking is the rotational analog
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of the symmetry breaking observed in the symmetric planar expansion (Fearn et al.

[1990]; Durst et al. [1993]; Drikakis [1997]). However, in the planar case there is now

general agreement between computation and experiment on the bifurcation, while in the

axisymmetric case, linear stability computations by Cliffe et al. [To be published] (also

verified in the present study) find that there is no bifurcation of the perfectly symmetric

problem at Reynolds numbers comparable to those reported in the experiments (Mullin

et al. [2009]).

Many experimental studies report unsteadiness and oscillations in the expand-

ing-pipe flow (Back and Roschke [1972]; Iribarne et al. [1972]; Feuerstein et al. [1975];

Sreenivasan and Strykowski [1983]; Mullin et al. [2009]). There is, however, no agree-

ment as to the Reynolds number at which oscillations first arise. The explanation for

the discrepancy has been attributed to the sensitivity of the expansion to the inlet profile

(Roschke and Back [1976]; Pollard [1981]; Latornell and Pollard [1986]).

Figure 4.1: Sketch illustrating the evolution of a perturbation through an expanding
pipe. Small inlet perturbations are amplified in the region of the separated axisymmetric
shear layer, but eventurally decay downstream. Hence, even though the flow is linearly
stable, it supports very strong transient growth of perturbations.

The aim of this paper is to quantify and highlight the importance of transient

growth of infinitesimal perturbations in expanding pipe flow. Fig. 4.1 illustrates the

essential idea. Small disturbances in the inlet upstream of the expansion are amplified

in the region containing the separated axisymmetric shear layer following the expansion.

The amplified disturbances are then advected into the downstream pipe where they in-
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evitably decay. This leads to a situation in which the flow may be highly sensitive to

incoming perturbations, but only transiently. Hence, even though the flow is linearly

stable, in that all perturbations eventually decay and likewise all eigenvalues are nega-

tive, the flow may be highly susceptible to small perturbations. From a local perspective

one would attribute the transient dynamics to a localized region of convective instability

within the flow resulting from an inflectional velocity profile (Huerre and Monkewitz

[1990]; Cossu and Chomaz [1997]; Chomaz [2005]). In the context of a direct numerical

study where one does not resort to local parallel approximations but instead fully resolves

all aspects of the flow, one understands and analyzes the transient dynamics as a tran-

sient growth problem or equivalently as a singular value problem. For example, recent

studies have highlighted the importance of transient dynamics due to localized regions

of convective instability for the backward-facing step (Blackburn et al. [2008a]), curved

channel flow (Marquet et al. [2008b]) and steady and pulsatile stenotic flow (Blackburn

et al. [2008b]). This is the approach taken in the present work.

4.2 Methodology

4.2.1 Governing Equations and Flow Geometry

The flow is governed by the incompressible Navier–Stokes equations

∂tu+ (u · ∇)u = −∇p+Re−1∇2u, (4.1a)

∇ · u = 0, (4.1b)

where u is the fluid velocity and p is the modified or kinematic static pressure. The

equations are written in dimensionless form with the velocity normalized by Ū , the bulk

velocity of the incoming flow, and lengths normalized by the diameter of the inlet pipe
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θ
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LoLi

Figure 4.2: Geometry of the expanding pipe. The computational flow domain Ω is illus-
trated with the cylindrical coordinate system and the inlet and outlet lengths indicated
(not to scale).

D. Thus the Reynolds number is the bulk Reynolds number of the inlet pipe flow given

by Re = ŪD/ν, where ν the fluid’s kinematic viscosity.

To avoid possible confusion when reading the following material it is useful to

emphasize here the approach taken to non-dimensionalization. Except where indicated

otherwise, all quantities reported employ the normalization used above in defining the

Reynolds number. In particular this means that lengths are presented in terms of the

inlet pipe diameter, D. The exception we make to this rule is in recording downstream

reattachment points, where step height h = D/2 is also used as a measure of length.

This exception is made to facilitate comparison to previous works. Throughout the

paper, times are in units of D/Ū .

The pipe geometry naturally lends itself to using cylindrical coordinates which

are denoted (x, r, θ). Here x is used for the axial coordinate since this corresponds to

the streamwise direction, with x = 0 at the expansion location. The fluid velocity in

these cylindrical coordinates is thus written u = (ux, ur, uθ).

Ideally the flow geometry would be infinite in the streamwise direction. In prac-

tice, the computational flow domain Ω consists of a finite inflow region of length Li

upstream of the expansion and a finite outflow region of length Lo downstream of the

expansion as in Fig. 4.2. For sufficiently large Li and Lo, as used in this study, results
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are independent of these lengths and the flow approximates the infinite case.

We impose a fully developed Hagen–Poiseuille incoming profile, which in non-

dimensional form is given by u = 2(1 − 4r2)ex. We use no-slip boundary conditions

on all walls of the pipe and impose a stress-free outflow boundary condition at the

downstream end of the pipe. Thus the boundary conditions for the flow problem are

u(∂Ωi, t) = 2(1− 4r2)ex, (4.2a)

u(∂Ωw, t) = 0, (4.2b)

ex · ∇u(∂Ωo, t) = 0, p(∂Ωo, t) = 0, (4.2c)

where ∂Ωi is the inlet boundary at x = −Li, ∂Ωw is the boundary corresponding to the

rigid walls of the inlet pipe, outlet pipe and expansion, and ∂Ωo is the outlet boundary

at x = Lo. Variations on these boundary conditions will appear in the stability and

transient growth problems as well as for studies of noisy inflow and will be discussed at

the appropriate place.

4.2.2 Linear Stability and Transient Growth Problems

We briefly summarize the main aspects of the linear stability and transient growth

problems. Some further details for the particular problem are given in Sec. 4.2.3. General

accounts of the time-stepper approach used here may be found elsewhere (Tuckerman

and Barkley [2000]; Barkley et al. [2008]).

The first step in the analysis is to obtain base flows U . In this study these

are steady, two-dimensional, axisymmetric solutions to Eqns. (4.1) of the form U =

(Ux(x, r), Ur(x, r), 0). For the range of Re considered in this paper, these solutions are

unique functions of Re.

The next step is to consider the evolution of infinitesimal disturbances u′ to the
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base flow. These are governed by the linearized Navier–Stokes equations

∂tu
′ +DN · u′ = −∇p′ +Re−1∇2u′, (4.3a)

∇ · u′ = 0, (4.3b)

where

DN · u′ ≡ (U · ∇)u′ + (u′ · ∇)U (4.4)

The boundary conditions for Eqns. (4.3) will be addressed at the end of Sec. 4.2.3.

The linear evolution of a perturbation from t = 0 to a later time t under

Eqns. (4.3) can be expressed eloquently as the action of a linear state transition operator

A(t) on the initial perturbation u′(0) as

u′(t) = A(t)u′(0). (4.5)

We then perform an analysis, either of stability or of transient growth, for this linear

evolution operator.

For linear stability, we seek normal mode solutions of the form u′(x, r, θ, t) =

exp(σjt)ũj(x, r, θ) + c.c., where the ũj are eigenmodes and the σj are eigenvalues. For

any fixed arbitrary time T (typically T is of order unity under the scaling we have used)

the eigenmodes are solutions of

A(T )ũj = µjũj (4.6)

where the eigenvalues µj and σj are related by µj = exp(σjT ). The eigenvalues µj of

largest modulus are found iteratively by actions of the operator A(T ) as discussed in

Sec. 4.2.3. If there exist any solutions of Eqn. (4.6) with |µj | > 1, corresponding to σj

with positive real part, then the base flow U is linearly unstable.

The transient growth computations consist of determining the greatest possible

energy growth, G, over all initial perturbations for a given finite time horizon τ . Because
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the evolution is linear, it is sufficient to consider initial perturbations with unit norm in

the standard L2 inner product (·, ·) over the flow domain Ω. Then the energy of such

a perturbation after time τ , relative to the initial energy, is

E(τ)
E(0)

= ||u′(τ)||2 =
(
u′(τ),u′(τ)

)
,

where ||u′(0)|| = 1. Using the evolution operator A(τ) and its adjoint A∗(τ) this can

be written as

E(τ)
E(0)

=
(
A(τ)u′(0),A(τ)u′(0)

)
=
(
u′(0),A∗(τ)A(τ)u′(0)

)
.

Let λj and vj denote eigenvalues and normalized eigenmodes of A∗(τ)A(τ):

A∗(τ)A(τ)vj = λjvj , ||vj || = 1. (4.7)

Then the maximum growth obtainable at time τ , denoted G(τ), is

G(τ) ≡ max
||u′(0)||=1

E(τ)
E(0)

= max
j
λj . (4.8)

Thus the maximum growth is obtained by computing the dominant eigenvalue, and

corresponding eigenmode, of A∗(τ)A(τ). This is again done iteratively through actions

of A∗(τ)A(τ) as discussed in Sec. 4.2.3.

Finding the dominant eigenvalues of A∗(τ)A(τ) is equivalent to finding the

largest singular values of A(τ). The eigenmode vj in Eqn. (4.7) provides an initial

perturbation u′(0) which generates a growth λj over time τ . Referring to Fig. 4.1,

this is the inlet perturbation. Potentially, one is also interested in the evolution of

perturbations from t = 0 to some large value of t where the perturbation washes out

of the system. The evolved perturbation at time τ has a particular meaning however.
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Defining uj to be the normalized perturbation at time τ evolved from initial condition

u′(0) = vj , we have

A(τ)vj = σjuj , ||vj || = ||uj || = 1, (4.9)

where σj = ||u′(τ)||. This is nothing other than the leading part for the singular value

decomposition of A(τ).

When solving the eigenvalue problem, the time horizon, denoted T in this case,

is set by practical considerations; the eigenvalues λj are independent of T . For the tran-

sient growth problem, the eigenvalues of A∗(τ)A(τ), singular values of A(τ), depend

on the time horizon, here denoted τ , and this value is a parameter of study — each

new τ requires a new solution to Eqn. (4.7). As is the case for linear stability, in the

transient growth problem one is primarily interested in the optimal energy growth given

by the dominant eigenvalue of A∗(τ)A(τ) as these describe the ‘most dangerous’ cases.

However, as we show in Sec. 4.3.3 the first few sub-dominant eigenvalues can also be

of interest.

The final general point is that the eigenmodes of A(τ) and A∗(τ)A(τ) are

trigonometric in the azimuthal direction, of the form exp(imθ) + c.c., for integer m.

Moreover, eigenmodes with different azimuthal mode numbers m decouple. As a result,

m effectively becomes a specified input parameter to the stability or transient growth

problem. (See Sec. 4.2.3). Specifically then, the optimal energy growth is a function

not only of the time horizon τ as indicated in Eqn. (4.8), but also the control parameter,

Re, and the azimuthal mode number m, i.e. G = G(τ,Re,m). For clarity, the notation

used later in this paper will be restricted to only those dependencies relevant to the

context.
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4.2.3 Further Details

For completeness we present further details of the numerical computations used in this

study. We employ a time-stepper approach (Barkley et al. [2008]) in which all problems

are solved with the same code base: a spectral/hp element–Fourier discretization of the

Navier–Stokes equations (Blackburn and Sherwin [2004]).

A representative computational mesh is shown in Fig. 4.3. The axial–radial plane,

(x, r), is discretized using a spectral-element mesh as in Fig. 4.3(a). All meshes used

in this study have the same inflow length Li = 5 and the same refinement structure

in the vicinity of the expansion. This mesh has been used in previous studies of the

planar backward-facing step (Blackburn et al. [2008b]). The outflow length requirements

depend on τ and vary from L0 = 25 (as in Fig. 4.3) at small τ up to L0 = 75 at τ=130,

the largest considered in this study. The longer meshes differ from that shown only by

the continuation of regular downstream elements. The requirements for the inflow and

outflow lengths are set by the boundary conditions on the transient growth computations

discussed shortly.

Velocity components and the pressure are expanded in a tensor product of order-

N polynomials within each element. In the azimuthal direction a Fourier representation

with complex modes is used to produce the full three-dimensional physical geometry

illustrated in Fig. 4.3(b). A Fourier-mode-dependent set of boundary conditions is im-

posed at r = 0, the centerline of the pipe, as detailed elsewhere (Blackburn and Sherwin

[2004]). For linear analyses, azimuthal Fourier modes can be dealt with independently,

whereas in direct nonlinear simulations of three-dimensional states, Fourier modes must

be dealt with concurrently.

The choice of polynomial order for the spectral-element expansion is dictated

by the need to resolve the separated shear layer of the base flow. This can be best
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Table 4.1: Streamwise position of base flow reattachment point (in units of step height,
h) at Re=1000, as a function of spectral-element polynomial order N . The outflow
length is Lo = 75 = 150h.

Order, N xr/h

3 89.3312
4 89.2565
5 89.2655
6 89.2630
7 89.2623
8 89.2620

assessed by analysis of the reattachment of the separating streamline, since its location

depends sensitively on the resolution of the separated shear layer, particularly near the

separation point. Table 4.1 shows the dependence of the flow reattachment point, xr,

on polynomial order at Re=1000. A value of N = 6 is sufficient to resolve the flow

accurately and this value is used for all computations in this study.

Nonlinear solutions consist of two types. First, there are steady, axisymmetric

base flows U = (Ux(x, r), Ur(x, r)). These are computed by time evolving the two-di-

mensional (axisymmetric) Navier–Stokes equations with boundary conditions given by

Eqns. (4.2) until a steady state is reached. The final flow field is then stored for use

with the linear stability analysis and growth computations.

The other types of nonlinear solutions presented are fully three-dimensional,

time-dependent flows resulting from small disturbances added to the parabolic inflow.

Specifically, the transverse velocity components of the inflow are perturbed by a small

amount of Gaussian white noise. The boundary conditions, Eqn. (4.2a), are replaced by

u(∂Ωi, t) = 2(1− 4r2)ex + ηrer + ηθeθ (4.10)

where ηr, ηθ are random variables drawn from a Gaussian distribution with zero mean

84



CHAPTER 4. TRANSIENT GROWTH THROUGH A SUDDEN EXPANSION

and standard deviation γ. In most cases we use γ = 10−2, but also use γ = 2.5× 10−3.

The linear computations (eigenvalues and optimal growth) are based on the time-

stepper approach in which the actions of the linear operators A and A∗ are effected by

evolving perturbations in time using a modified version of the same simulation code.

This is coupled with standard linear algebra algorithms to obtain the desired eigenvalues

and eigenmodes.

Since we work in cylindrical coordinates and the base flows are axisymmetric,

the linearized advection operator in Eqns. (4.3)–(4.4) has the following explicit form

DN · u′ =




U · ∇ 0 0

0 U · ∇ 0

0 0 U · ∇



+


∂xUx ∂rUx 0

∂xUr ∂rUr 0

0 0 Ur/r






ũx

ũr

u′θ


where U · ∇ = Ux∂x + Ur∂r. Thus the only non-zero term resulting from cylindrical

coordinates is Uru
′
θ/r. All other terms vanish for the base flows we consider or have

Cartesian analogs.

Computing the action ofA∗(τ), necessary for computing the action ofA∗(τ)A(τ),

requires evolving perturbations by equations that are adjoint to Eqns. (4.3). Using in-

tegration by parts these adjoint equations are

−∂tu∗ +DN∗ · u∗ = −∇p∗ +Re−1∇2u∗ (4.11a)

∇ · u∗ = 0 (4.11b)

where u∗ and p∗ are the adjoint velocity and pressure fields, respectively. The adjoint
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advection terms are

DN∗ · u∗ =




−U · ∇ 0 0

0 −U · ∇ 0

0 0 −U · ∇



+


∂xUx ∂xUr 0

∂rUx ∂rUr 0

0 0 Ur/r






u∗x

u∗r

u∗θ


The change of sign from (U · ∇)u′ to −(U · ∇)u∗ follows from one integration by

parts, together with the divergence-free condition. The second term is equivalent to a

standard matrix transpose. The action of A∗(τ)A(τ) on a perturbation is obtained by

evolving the perturbation forward τ time units under Eqns. (4.3), followed by evolving

the perturbation backward τ time units under Eqns. (4.11). This is easy to implement

when using the time-stepper approach.

For axisymmetric base flows, the linear operators A and A∗ are homogeneous in

the azimuthal direction and different azimuthal modes decouple. Equations. (4.3) and

(4.11) then have invariant subspaces of the form

ũx(x, r, θ, t) = ûmx (x, r, t) cos(mθ)

ũr(x, r, θ, t) = ûmr (x, r, t) cos(mθ)

u′θ(x, r, θ, t) = ûmθ (x, r, t) sin(mθ)

p′(x, r, θ, t) = p̂m(x, r, t) cos(mθ)

or similar with any rotation in θ, where m is integer. The time stepping code thus

evolves the three velocity components (ũx, ũr, u′θ), on a strictly two-dimensional (x, r)

spectral-element mesh. The mode number m is an input parameter.
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For computing the eigenvalues of A(T ), the inflow boundary condition is ho-

mogeneous Dirichlet, and all other boundary conditions are as in Eqns. (4.2). For

computing eigenvalues of A∗(τ)A(τ) we use homogeneous Dirichlet boundary condi-

tions on all boundaries both for the operator A(τ) and A∗(τ). As discussed elsewhere

(Barkley et al. [2008]), for transient growth problems it is essential that the boundaries

be sufficiently far upstream and downstream that perturbations do not reach them dur-

ing the computation of A∗(τ)A(τ). This requirement dictates the values of Li and Lo

used in this study. We find Li = 5 is sufficient for all cases considered in this study. We

vary Lo but verify that it is far downstream of computed perturbations.

Eigenvalues are computed using a modified Arnoldi iteration method (Barkley

et al. [2008]). In brief, repeated application of the relevant evolution operator, A(T )

or A∗(τ)A(τ), to a random starting vector u0 generates a Krylov sequence and subse-

quently an upper Hessenberg matrix, H, which spans a subspace of the image of the

operator. After relatively few iterations, the dominant eigenvalues of H converge to the

dominant eigenvalues of A(T ) or A∗(τ)A(τ), thus allowing the important eigenvalues

and eigenvectors to be computed at low computational cost and memory requirements.

4.3 Results

4.3.1 Base Flows

We begin with a brief discussion of the steady, axisymmetric base flows. Figure 4.4

shows the streamfunction for a typical case, at Re=600. Streamlines of the high-speed

core flow are drawn as dotted lines, while the separation streamline emanating from the

expansion edge and the recirculation streamlines are drawn as solid lines. Contour level

intervals for the streamfunction in the recirculation region and in the core region are
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(a)

(b)

Figure 4.3: A spectral element mesh used in this study. For the case illustrated there
are 563 elements, an inflow length of Li = 5 and an outflow length of Lo = 25. When
required, meshes with more elements and outflow lengths up to Lo = 75 have been used.
The two-dimensional mesh (a) used for linear analysis is extended to three dimensions
(b) for non-linear analysis (DNS) where Fourier expansions are used in azimuth.
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Figure 4.4: Contour plot of the base-flow streamfunction at Re = 600, showing the
separation and reattachment of the flow, and the recirculation region behind the expan-
sion. Contours are drawn at intervals of 0.125 in the core of the flow, and at intervals
of 0.02 in the recirculation region.

distinctly different in order to better illustrate flow structure.

The base flows at all other Reynolds numbers in our study are qualitatively

similar, differing primarily in length of the recirculation region. Figure 4.5 shows the

relationship between the recirculation length, that is the downstream reattachment point

denoted xr, and Reynolds number for the base flows up to Re=1400. The recirculation

length increases linearly with Re according to xr/h = 0.0876Re. We believe this to be

the most accurate study yet reported of recirculation length for the 1 to 2 expanding

pipe. The constant of proportionality we obtain is slightly lower than that of Latornell

and Pollard [1986] and Iribarne et al. [1972], who report a linear relationship with a
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Figure 4.5: Relationship between downstream reattachment point xr and Reynolds
number for base flows with a fully-developed inlet profile up to Re=1400. Points are
the computed value of xr and the solid line shows the best-fit proportionality given by
xr/h = 0.0876Re. The dotted lines indicate reattachment lengths for the base flows
at Re=600 (corresponding to Fig. 4.4) and Re=1200.

proportionality of 0.096 for a fully-developed inlet profile. However, our value matches

the more recent experimental observations of Hammad et al. [1999] who reported a

value of 0.088.

4.3.2 Linear Stability

For completeness we report in Table 4.2 the leading eigenvalues (those with largest real

part) obtained from a linear stability analysis up to Re=1400. At least for Re from 600

to 1400 the leading eigenvalues all correspond to azimuthal modes with m=1 and only

these eigenvalues are reported. The eigenvalues reported in Table 4.2 agree with those

of Cliffe et al. [To be published] to within 0.3%. In all cases the leading eigenvalues

are real and negative, and hence as stated at the outset, the axisymmetric base flow

is linearly stable up to Re=1400. In fact Cliffe et al. [To be published] determine that

there are no positive eigenvalues to considerably higher Re.
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Table 4.2: Leading eigenvalues for linear stability of flows in the 1 to 2 axisymmetric
expansion for Reynolds numbers indicated. All values correspond to azimuthal mode
number m=1. All are real and negative and hence the axisymmetric base flow is linearly
stable up to at least Re = 1400.

Re σ

600 −6.2388× 10−3

1000 −2.6827× 10−3

1200 −1.9391× 10−3

1400 −1.4571× 10−3

4.3.3 Transient Energy Growth

Having established that the flow is linearly stable up to at least Re=1400, we turn to

the determination of the most dangerous, that is energetic, transient dynamics. Recall

that such a study involves not only the Reynolds number, but also the time horizon τ

and the azimuthal mode number m. We begin by presenting results as a function of τ

and m for a fixed value of Re and subsequently we consider the dependence on Re.

Dependence on azimuthal mode number

Figure 4.6 shows optimal growth envelopes G(τ) for perturbations in the axisymmetric

(m=0) and first six non-axisymmetric modes (m=1 to 6) over a range of time horizons

at a fixed Reynolds number of Re=600. In general, the greatest increase in energy

is seen in the first azimuthal mode, m=1, which at this Reynolds number peaks at

τ ' 50, just at the right edge of the figure, and decreases for larger τ . The higher

mode numbers exhibit less growth and peak at considerably smaller values of τ . For

example, the m=2 growth envelope peaks at τ ' 19.5 where the optimal growth there

is an order of magnitude less than for the m=1 mode at the same value of τ and 1.5

orders of magnitude less than for the m=1 mode where it obtains its maximum.
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There is generally a monotonic decrease in growth with increase in mode number,

with two exceptions. The first is that the m=0, axisymmetric, mode growth envelope

is qualitatively different from the others and in particular the growth peaks at a much

earlier time horizon and has a much smaller value in comparison to any of the low-order,

non-axisymmetric modes. The other exception to the dominance of m=1 is at small

time horizons. Below τ ' 3 the m=2 mode exhibits larger optimal growth than the

m=1 mode, and below τ ' 2 the m=3 mode exhibits larger optimal growth than the

m=2 mode. This can be clearly seen in Fig. 4.6(b). We have not attempted to resolve

the details and mode ordering at yet smaller values of τ . This modal behavior, where the

m=1 mode dominates except for short time horizons, has also been reported for flows in

parallel (Bergström [1993]; Schmid and Henningson [1994]) and constricted (Blackburn

et al. [2008b]) pipes.

The dominance of the energy growth for the m=1 mode is observed at all other

Reynolds numbers in our study. Hence, for the remainder of the chapter we shall mainly

focus on the m=1 case. Some results will also be presented for the m=0 case since

it is qualitatively different from the others and because it represents the strictly two-

dimensional problem.

Reynolds number and time horizon

The dependence of the optimal growth on Reynolds number and time horizon is well

summarized by contour plots of G(τ,Re). Figures 4.7(a) and (b) show such contour

plots for m=1 and m=0 modes, respectively. Only contours with G ≥ 1 are plotted and

the no-growth contours, corresponding to G = 1, are emphasized by the thicker black

curves. To the right of the no-growth contours G is less than unity, meaning that the

energy of any perturbation will be less than its initial energy at these values of τ .
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Figure 4.6: (a) Energy growth envelopes at Re=600 for azimuthal mode numbers (as
indicated) up to m=6. (b) Enlargement of (a) for small τ . Curves for m = 1 through
m = 6 are in decreasing monotonic order on the right-hand side.
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Table 4.3: Table of critical Reynolds numbers, Recm, maximum growth values Gmax
m and

corresponding time horizons for maximum growth, τmax
m (for Re=600 and Re=1200 as

indicated) for each of the first four azimuthal modes, m.

m Recm Gmax
m (600) τmax

m (600) Gmax
m (1200) τmax

m (1200)
0 64 9.20× 100 4.4 2.32× 101 6.2
1 26 6.23× 103 50.1 3.77× 106 106
2 38 1.95× 102 19.5 7.59× 102 34.1
3 54 8.05× 101 14.6 3.17× 102 28.3

The intersection of the no-growth contour with the Reynolds number axis is a

saddle-point of the growth function in the τ−Re plane and indicates a critical Reynolds

number, Rec, above which energy growth is possible. This critical value depends on

mode number m and so we define Recm as the value of Re for which

∂G(τ,Recm)
∂τ

∣∣∣∣
τ=0

= 0.

For Re > Recm, the growth envelope G(τ) for mode number m has positive slope at

τ=0 and so G(τ) > 1 for a least some values of τ . The smallest critical value occurs

for m=1 with Rec1 = 26. Values of Recm for other m are also quite low and given in the

second column of Table 4.3.

As the Reynolds number increases perturbations with m=1 azimuthal struc-

ture can be amplified by large factors. Specifically, one can see in Fig. 4.7(a) that at

Re=1200, perturbations are amplified by factors of over 106. Thus, even though the

flow is linearly stable at Re=1200, it is capable of amplifying small perturbations to

appreciable levels through strictly linear growth. In contrast to the m=1 modes, ax-

isymmetric modes of Fig. 4.7(b) experience very limited growth and are confined to

much shorter time horizons for all Re studied.
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Figure 4.7: Contours of optimal transient energy growth as a function of time horizon,
τ , and Reynolds number for (a) azimuthal mode number m=1 and (b) azimuthal mode
number m=0.
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Figure 4.8: Energy growth under linear evolution at Re=1200, m=1 for three different
initial conditions corresponding to optimal perturbations at τ=30, 70 and 110. Circles
denote the optimal growth envelope. Each linear evolution curve touches the envelope
at its respective τ value, as indicated by a filled circle.

Time evolution of optimal perturbations

We now consider the time evolution of some optimal perturbations at Re=1200. Figure

4.8 shows the optimal growth envelope for Re=1200 and m=1, along with the transient

energy evolution under the linearized Navier–Stokes equations from three different initial

conditions. The initial perturbations are the computed optimal perturbations for three

different values of τ as indicated. The case τ=110 is very nearly the initial condition

giving the maximal energy growth at Re=1200. As is necessarily the case, each of these

transient evolution curves touches the optimal growth envelope at its corresponding τ

value, but otherwise they lie entirely below the envelope.

Figure 4.9 depicts the perturbation field evolving from the optimal initial condi-

tion for τ=110, (Re=1200, m=1). This evolution corresponds to the transient energy

trajectory drawn with a solid line in Fig. 4.8. Owing to the small magnitude of the initial

perturbation relative to its evolved state, we visualize the perturbation at early times
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differently from later times. Initially the perturbation is shown via a contour plot of the

azimuthal velocity component uθ in a planar cut through the geometry. Subsequent

fields are visualized in terms of three-dimensional isosurfaces of azimuthal velocity. The

evolving perturbation is plotted on a relatively small section of the computational do-

main every four time units until time 28. The perturbation is also plotted when it attains

its maximum energy, at t=110. At this time the perturbation is well downstream of the

expansion: the centroid of the perturbation energy lies at xc = 47.1.

Unsurprisingly, the optimal initial perturbation is concentrated near the flow

separation at the expansion from where it is subsequently advected by the base flow into

the separated shear layer. In passing over the shear layer, chevron structures emerge

in a packet, initially of very limited streamwise extent. After an initial rapid growth

phase, the structure stabilizes as it approaches the time of peak growth after which the

vortices at the rear of the structure begin to decay. The anti-symmetric appearance

of the perturbation is a direct consequence of the m=1 azimuthal structure. Note

that there is a characteristic axial wavelength of the disturbance that is approximately

preserved through the transient growth.

Transient behaviour of the optimal perturbation in m=0 at Re=1200 is illus-

trated through isosurfaces of radial velocity in Fig. 4.10. The initial disturbance is again

concentrated around the step edge. Shortly afterwards it evolves into a set of toroidal

rolls of alternating sign which advect downstream, first growing in energy up to t ≈ 6,

then decaying. Again note that the axial wavelength of the disturbance is preserved

through this transient behaviour.

The physical nature of the perturbed shear layer for Re=1200, m=1 is illustrated

in Fig. 4.11. The optimal perturbation at time of maximum energy growth is linearly

combined with the base flow at a relative energy level of 5%. This combined state is
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Figure 4.9: Evolution of optimal initial disturbance in the m=1 mode visualized through
contours/isosurfaces of azimuthal velocity at Re=1200 from t = 0 (bottom) in time
intervals of four units in the spatial range −2.5 ≤ x ≤ 15. The top figure shows the
evolved disturbance at its maximum growth. The spatial range is 36.5 ≤ x ≤ 54 and
the isosurface levels two orders of magnitude larger than in the lower part of the figure.

Figure 4.10: Evolution of optimal initial disturbance in the m=0 mode visualized through
isosurfaces of radial velocity at Re=1200 from t = 0 (bottom) in time intervals of two
units in the spatial range x ∈ [−2.5, 15].
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Figure 4.11: Physical interpretation of the maximal disturbance at Re=1200. Shown
is a linear superposition of the base flow with the optimal m=1 disturbance at the
time of maximum growth, t=110. The disturbance has a relative energy magnitude of
5% compared to the base flow. The visualization is a semi-transparent isosurface of
azimuthal vorticity at a level highlighting the separated shear layer.

visualized via an isosurface of azimuthal vorticity. The image suggests that the optimal

perturbation manifests as a sinuous oscillation of the shear layer, as was also observed in

the optimal growth analysis of flow in a stenotic pipe (Blackburn et al. [2008b]). Note

that the azimuthal orientation is arbitrary, due to rotational symmetry of the flow, and

has been chosen here so as to emphasize the structure of the surface.

Growth maxima

At a given Reynolds number, and for a specified azimuthal mode number m, the max-

imum of G over all time horizons τ is an important quantity. We thus define the

maximum growth and the corresponding time horizon as

Gmax
m (Re) = max

τ
G(τ,Re,m),

τmax
m (Re) = arg max

τ
G(τ,Re,m).

Table 4.3 includes the maximum growth and corresponding time horizons at represen-

tative Reynolds numbers of 600 and 1200.

The growth maxima are plotted in Fig. 4.12 as a function of Re for several values
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Figure 4.12: Optimal energy growth, Gmax
m , as a function of Re for each of the first

four azimuthal modes. Above Re ≈ 300, Gmax
1 increases exponentially with Reynolds

number at a rate of 0.45 orders of magnitude for each increase of 100 in Re. Inset shows
detail at small Re. Curves intersect logGmax

m = 0 at the critical Reynolds number Recm
of each mode m.

of m. Each curve emerges at the corresponding critical value Recm. The figure highlights

the significantly different magnitude of growth obtainable for m=1 perturbations com-

pared with perturbations in other azimuthal mode numbers, particularly axisymmetric

perturbations.

Beyond approximately Re=300, logGmax
1 (Re) is seen to be linear with Re in-

dicating an exponential dependence of maximal growth on Reynolds number. This may

also ultimately be true of the other broken symmetry perturbations at Reynolds numbers

higher than those studied here. Similar exponential growth with Reynolds number has

been observed for two other separated flows: flow over a backward-facing step (Black-

burn et al. [2008a]) and steady flow in a stenotic pipe (Blackburn et al. [2008b]). This

exponential dependence is significantly different from the classic parallel flows, planar

Couette flow (Reddy and Henningson [1993]) and straight pipe flow (Bergström [1993];

Reddy and Henningson [1993]), for which the maximum transient growth increases only

with the square of Reynolds number.

99



CHAPTER 4. TRANSIENT GROWTH THROUGH A SUDDEN EXPANSION

The form of evolved optimal perturbations at the time of maximal growth, τmax
m ,

are expected to provide a good indication of what might be observed in a flow subject

to small perturbations. See for example the perturbation at t = 110 in Fig. 4.9 and

the combined state shown in Fig. 4.11. We shall address this in Sec. 4.3.4 where we

consider nonlinear simulations. Here we list in Table 4.4 some pertinent characteristics

of the optimal perturbation fields at the point of maximum growth for the case of m=1.

For each Re, τmax
m is given, along with the centroid location (xc, rc) of the energy of the

evolved perturbation, as well as the local axial wavelength λx and temporal frequency St

of the perturbation. The wavelength of the evolved perturbation decreases slightly with

Reynolds number, while the temporal frequency is essentially independent of Reynolds

number. The non-zero radial location rc is a consequence of the fact that the centroid

is calculated from a Fourier mode, in the meridional semi-plane, and it represents the

radial location where the disturbance is largest (if the energy centroid were calculated

in physical space then rc would be zero).

Fig. 4.13 shows xc, the axial location of the perturbation energy centroid at

maximal growth, together with the reattachment point of the base flow previously plotted

in Fig. 4.5. One sees clearly that for Re & 500 the optimal disturbance at its peak

energy growth lies consistently about five diameters (10 step heights) upstream of the

reattachment point of the base flow. This provides strong evidence that the separated

shear layer is driving the growth of perturbations.

Suboptimal growth

The optimal perturbations considered thus far are those which provide the maximum

transient energy growth under linear evolution. However suboptimal perturbations can

attain comparable energy, with the first sub-dominant perturbations in particular demon-
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Table 4.4: Characteristics of the optimal perturbations at the time of maximum growth,
τmax, for m=1 modes at Reynolds numbers indicated. Along with τmax the centroid
location (xc, rc) of the evolved perturbation energy, as well as the local axial wavelength
λx and temporal frequency St of the perturbation.

Re τmax xc rc λx St

600 50.1 21.3 0.40 3.79 0.175
800 69.0 29.9 0.40 3.62 0.165

1000 87.6 38.5 0.40 3.62 0.155
1200 106 47.1 0.40 3.68 0.158
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Figure 4.13: Location of the centroid of the disturbance at its maximum growth (points
connect by solid lines), compared with the location of the reattachment point (dashed
line). The disturbance reaches its maximum approximately 5 diameters upstream of
reattachment point.
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strating growth on the same order of magnitude as the optimal perturbations. We have

calculated suboptimal perturbations, and corresponding energy growth factors, by com-

puting the subdominant eigenvalues and eigenmode of A∗(τ)A(τ) in Eqn. (4.7) by the

Arnoldi method as described in Sec. 4.2.3

In Fig. 4.14 we show growth envelopes for the optimal and first three suboptimal

perturbations at Re=600. A few additional suboptimal growth factors are plotted at τ =

50. It is apparent that the growth envelopes are grouped in pairs. The first subdominant

curve is very similar to the optimal envelope – it attains its growth maximum at nearly

the same value of τ and with 80% the energy amplification of the optimal. Each of the

second pair of suboptimal growth envelopes peaks at an earlier time horizon than for the

first pair suggesting the eigenmodes undergo slightly different dynamics. These modes

obtain about 30% of the optimal energy growth. The first eight leading eigenmodes at

τ = 50 indicates further pairing of modes. We have not resolved details of suboptimal

dynamics further into the spectrum.

The perturbation fields themselves provide valuable insight into the pairing of

growth envelopes. The azimuthal velocity of the four leading modes at τ = 50 are visu-

alized in Fig. 4.14. These fields have been obtained by evolving each (sub)optimal initial

condition, each with the same energy norm, to time t = 50. Referring to Eqn. (4.9),

these are the first four left singular vectors of A(50) multiplied by the corresponding

singular value. The isosurface levels are the same for all four modes.

The pairing of the eigenvalues is immediately apparent: the corresponding opti-

mal modes come in pairs that are primarily related by a phase shift of π/2 relative to one

another. This has been previously observed and discussed in the context of the planar

backward-facing step (Blackburn et al. [2008a]). For a truly streamwise invariant flow,

such as for a straight pipe, the optimal modes necessarily come in pairs exactly related
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Figure 4.14: Leading four growth envelopes for the optimal and suboptimal perturbations
for the m=1 mode at Re=600. The circles on the dotted line at τ=50 show the first
eight leading eigenvalues at the point of the peak optimal growth.

by a π/2 phase shift since the modes are trigonometric in the streamwise direction (sine

and cosine pairs). Essentially, the expansion can be viewed as a breaking of streamwise

translation symmetry of the flow. The breaking is very significant for the base flow since

it gives rise to the separated shear layer which dominates the flow in the expanding

pipe. However, the optimal perturbations see a flow with only a relatively weak broken

streamwise symmetry and hence come in pairs with only slightly different dynamics and

growth rates.

4.3.4 Response to Noise

To demonstrate the relevance of the linear growth computations to a real flow in the

presence of small inlet noise, we have performed a limited number of full, three-dimen-

sional direct numerical simulations with weak noise imposed on the inflow as described

in Sec. 4.2.3. For each simulation, the initial state is the steady laminar flow at the given

Reynolds number. Starting at time zero, noisy inflow boundary conditions are imposed.
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Figure 4.15: Iso-surfaces of azimuthal velocity for the four leading perturbations at
Re=600, m=1 evolved to time t = 50. (a) and (b) are the optimal and first sub-
optimal modes. (c) and (d) are the next pair of sub-optimal modes. (See Fig. 4.14.)

In the first instance, we analyze the dynamics of the flow in terms of the modal

energies over the full domain defined by

Em(t) =
1
2

∫
Ω
||ûm(t)||2 (4.12)

where ûm is the mth component of the azimuthal Fourier transformed velocity field.

Figure 4.16 shows the evolution of modal energies at three values of Re. The axisym-

metric component of the energy, E0, is larger than all others and is off the scale of the

figure. It starts at, and remains essentially unchanged from, the energy of the steady

base flow.

In all cases, the energy of the m=1 mode grows within a short time as the

effect of the noisy inflow condition propagates through the domain. For Re=600, the

m=1 modal energy saturates above the noise floor of all other modes. It is nevertheless

quite small. At Re=900, the m=1 modal energy saturates at 500 times the level of

the noise floor. The m=2 modal energy is just barely distinguishable above the higher

modes. At Re=1200, the first three modes are clearly visible with the m=1 modal

energy more than four orders of magnitude above the noise floor and approximately one
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Figure 4.16: Modal energy in a noisy inflow DNS of the expanding pipe flow at (a)
Re=600, (b) Re=900, and (c) Re=1200. Modal energies visible above the noise floor
of 10−9 are labeled. Initially the flow is the steady axisymmetric base flow. The axisym-
metric energy E0 is off the scale of the figure.

order of magnitude above the m=2 mode. Some long period (T ' 200) dynamics may

be present in the noise-driven flow at Re=1200, but we have not investigated these as

they are outside the focus of our study.

The modal energies shown in Fig. 4.16 clearly confirm the dominant response

of the m=1 mode as determined by the optimal growth analysis. Moreover, for the

Reynolds numbers examined, the saturation value of the m=1 energy E1 is consistent

with exponential dependence on Re with half an order of magnitude for each Re increase

of 100. This compares very favorably with the dependence of Gmax1 on Re in Fig. 4.12.

Having established that a weak noisy inflow does in fact preferentially excite the

m=1 mode, we proceed to examine the nature of the resulting flow. Figure 4.17 shows
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the optimal linear mode at Re=900 [Fig. 4.17(a)] and Re=1200 [Fig. 4.17(b)], together

with instantaneous snapshots of the noise-driven flow at the corresponding Reynolds

numbers. Specifically, the top half of each sub-figure shows the optimal perturbation,

corresponding to m=1, at the optimal time τmax. Energy of the perturbation field

is visualized. The bottom half of each sub-figure shows the three-dimensional flow at

a representative time instant. The time is arbitrary except that it is chosen so that

the phase of the nonlinear flow aligns with the phase of the optimal mode. For the

nonlinear flow the axisymmetric modal energy (which dominates the flow) is removed

and the energy in the remaining three-dimensional field is visualized in a semi-meridional

plane (lower half of the pipe). Figure 4.18 further highlights the structure of nonlinear

flow seen in Fig. 4.17(b) with contour plots of the three velocity components.

The most striking feature of the noise-driven nonlinear flow is that it exhibits

precisely the same chevron structures as predicted by the transient growth analysis. The

wavelengths of the fully nonlinear flow and the optimal perturbation are almost exactly

the same. Moreover, while the structures in the noise-driven flow occupy a greater

streamwise extent than the optimal perturbation, the location of the maximum in the

nonlinear flow is well aligned with the location of the optimal. As the Reynolds number

increases and the location of the optimum moves downstream, so does the location of

the nonlinear maximum. There is one final interesting feature of the nonlinear state.

Due to the rotational symmetry of the geometry, the m=1 structures may have any

orientation in θ. Thus in the noise-driven flow the orientation of the chevron structures

is not fixed but can, and does, vary in both space (seen in Fig. 4.18) and time.

The noise-driven nonlinear flow is time varying and depends on the noise level

imposed at the inflow. We address these aspects briefly in Fig. 4.19. In Figs. 4.19(a)-

(c) we capture the instantaneous state of the nonlinear flow at Re=900 at three times
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Figure 4.17: Visualisation of noise-driven flow and optimal perturbation at (a) Re=900,
and (b) Re=1200, in the range 10 < x < 65. The upper half of each pipe shows
the m=1 optimal perturbation at the respective Reynolds number, evolved to the point
of maximum growth. The lower half shows a snapshot of the noise-driven flow for
comparison.

Figure 4.18: Isosurfaces of streamwise (top), radial (middle) and azimuthal (bottom)
velocity components for the noise-driven flow showing the downstream disturbance in-
duced by the stochastic forcing at the same time instant as Fig. 4.17(b).

separated by 50 time units. The first plot, Fig. 4.19(a), is at the same time instant

as Fig. 4.17(a). In this figure we plot kinetic energy as a function of x sampled along

two rays down the length of the pipe. Both rays are at r = 0.8. One (solid) is at

θ = 0 and the other (dashed) is at θ = π/2. Since the flow at Re=900 is dominated by

m=1, it is sufficient to use only these two rays to sample the azimuthal structure of the

flow. These kinetic energy profiles give a good representation of the instantaneous flow

structures. Occasionally the nonlinear flow is relatively quiescent [as in Fig. 4.19(b)] and

as can be seen in comparing Fig. 4.19(a) with Fig. 4.19(c), when structures are visible,

their strength and location within the pipe vary to some extent.

For the same inlet noise, the structures occupy a much larger streamwise extent

at Re=1200, Fig. 4.19(d), and they tend to be located further downstream. By reducing

the noise level of the input at Re=1200, the nonlinear state becomes more purely m=1

and the nonlinear structures tend to be more localized and shown in Fig. 4.19(e).

A profile comparison of the standard deviation of velocity components from
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Figure 4.19: Energy of noise-driven flow through the line r = 0.8 for the θ = 0 (solid
lines) and θ = π/2 (dotted lines). (a)-(c) Re=900, (d) Re=1200, (e) Re=1200 at
1/4 the noise level of (d). Vertical lines indicate xc, the centroid of the optimal linear
perturbation at the corresponding value of Re.

the linear analysis and the noisy simulation is given in Fig. 4.20. The profiles for the

noise-driven flow were obtained through temporal-azimuthal averaging of the flow and

extracted through a radial line at x=100.0, while the linear profiles were attained through

a streamwise averaging of the disturbance profile at its maximal evolution. The stream-

wise and radial profiles correlate to a high degree. The broader shape of the azimuthal

profile from the noise-driven flow is probably due to the contribution of other modes in

the system.

Finally, we have extracted important statistical properties of the flow with stochas-

tic forcing. The frequency of the noise-driven flows are St ≈ 0.16, in agreement with the

optimal perturbations in Table. 4.4, but cannot be determined to better than two digits

of accuracy. There are similar limitations on the wavelengths of the noise-driven flow

and our opinion is that the visual comparison in Fig. 4.17 is probably more reliable. The
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Figure 4.20: Radial profiles of velocity component standard deviations comparing the
noise-driven simulation (left) with the linear analysis (right). The three velocity com-
ponents, each normalized to their peak value, are shown: streamwise (solid line), radial
velocity (dashed line) and azimuthal velocity (dotted line).

centroids of the turbulent kinetic energy match those of the optimal perturbations to a

reasonable degree in the streamwise direction, while matching almost exactly in cross-

stream position. Note that when comparing the centroid of the linear Fourier mode to

that of the present noise-driven simulations, we use the centroid of a two-dimensional

azimuthal-average of the turbulent kinetic energy.

4.4 Summary and Discussion

We have presented a numerical study of transient dynamics in an axisymmetric expanding

pipe. As an important aside, we have first independently confirmed that the steady

axisymmetric flow is indeed linearly stable up to Re=1400. We find that nevertheless

at linear order perturbations are very strongly amplified in the region of the separated

shear layer that extends downstream of the expansion. For example, at Re=1200 the

energy of perturbations can be amplified by a factor of over 106. The initial disturbances
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giving maximal transient growth are localized in the vicinity of the pipe expansion and

have azimuthal mode number m=1. Under linear evolution, these disturbances quickly

evolve into packets of waves characterized by a chevron structure corresponding to

a sinuous oscillation of the shear layer. These disturbances gain energy through an

inflectional instability mechanism as they pass along the shear layer, reaching energetic

maxima just upstream of the reattachment point of the flow. Thereafter, disturbances

advect downstream where they ultimately decay in the stable downstream pipe. Through

direct numerical simulations we have established that the linear results do capture,

quantitatively, most features seen in a fully three-dimensional nonlinear flow subjected

to small Gaussian inlet noise. Thus we have not only quantified in detail the transient

response of this flow but we have also demonstrated the importance of this type of linear

analysis to flows that would commonly be described as convectively unstable, and thus

noise amplifiers.

The expanding pipe flow shares many properties with other documented geome-

tries, although there are also some important differences. The most similar example to

the present one is found in a recent study of transient growth of disturbances to steady

and pulsatile flows in a pipe with a smooth axisymmetric constriction (Blackburn et al.

[2008b]). Such flows have been the subject of extensive research (Griffith et al. [2008];

Vétel et al. [2008]; Varghese et al. [2007]; Sherwin and Blackburn [2005]; Bertolotti

et al. [2001]) owing to the importance of the associated flows through arterial stenoses.

The two other closely related flows are the planar backward-facing step(Kaiktsis et al.

[1996]; Blackburn et al. [2008a]) and the curved channel flow (Marquet et al. [2008b]).

Probably the most significant similarity amongst all these separated flows is the

dependence of growth rate on Reynolds number. In all cases, beyond some value of Re,

the maximal growth Gmax depends exponentially on Re. This exponential dependence
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is in stark contrast to parallel shear flows, such as straight pipes and channels, in

which the maximum growth typically scales only as the square of Reynolds number

(Bergström [1993]; Schmid and Henningson [1994]; Reddy and Henningson [1993]).

This highlights the very important difference between the transient growth studied here

and that discussed extensively in parallel shear flows (Schmid and Henningson [2001]).

Here the transient growth is closely linked to the variation of the flow in the streamwise

direction, as illustrated in Fig. 4.1. Physically, perturbations grow rapidly in the region of

the shear layer driven by the inflectional velocity profile, but this growth is only transient

because perturbations advect past the reattachment point and thereafter decay. Chomaz

refers to convective non-normality (Chomaz [2005]) to distinguish these cases from the

lift-up non-normality driving transient growth in parallel shear flows. See also Marquet

et al. [2008a].

The exponents for different separated flows can be compared. In the present

study, Fig. 4.12, Gmax for the m=1 azimuthal mode increase at a rate of 0.45 orders of

magnitude for each increase of 100 in Re. For convience in this discussion we denote

this rate as α = 0.45/100. In the study of stenotic flow (Blackburn et al. [2008b])

the rate is not explicitly reported but is obtainable from the available data. The rate is

α = 1.23/100. However, for the stenotic flow Re is based on the flow upstream of the

stenosis. For comparison with the present work, the stenotic flow Re should be corrected

upwards by a factor of 2 to account for the local Re at the stenosis. This gives a rate of

increase of Gmax, again for the m=1 azimuthal mode, of α = 0.61/100, quite close to

that of the sudden axisymmetric expansion. In the study of the planar backward-facing

step (Blackburn et al. [2008a]) the rate is stated explicitly giving α = 1.18/100. This

is the growth rate for strictly two-dimensional modes, but for the planar case three-di-

mensional effects are not very important. The Re for the backward-facing step is based
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on the centerline velocity. Correcting this downwards by a factor of 2/3 to convert to

bulk velocity, Gmax for the backward-facing step increases at a rate of α = 1.77/100.

This is faster than for the axisymmetric flows, but it is not altogether different.

Another point of comparison between the different separated flows is the down-

stream location of the optimal perturbation when it reaches its maximum growth. In all

reported cases this downstream location grows linearly with Re. In the present study

we find this location to be consistently 5 inlet diameters upstream of the reattachment

point. In the steady stenotic case the location is consistently slightly downstream of

the reattachment point, although not far from it. These findings are all consistent with

the picture of a shear layer driven instability. Interestingly, this is very different from

the case of the planar backward-facing step in which the optimal perturbation is well

downstream of all separation and reattachment points when it reaches its maximum

growth. However, in the curved channel (Marquet et al. [2008b]), the perturbation is

located in the vicinity of the reattachment point at its growth maximum.

One can also consider the form of the optimal perturbations in different cases.

Again, not surprisingly, the optimal modes found in the sudden expansion studied here

are very similar to the optimal modes in the steady stenotic flow. In both cases the

optimal perturbations have m=1 azimuthal structure and visually are nearly the same.

(Compare Fig. 4.10 with Fig. 5 of Blackburn et al. [2008b].) On a more quantitative

level one can compare the wavelengths in the two cases. From Table 4.4, at Re=800

the wavelength of the optimal disturbance at its maximal location is λ = 3.79. For the

stenotic flow (in terms of equivalent Reynolds numbers and length scales) the wavelength

is λ = 3.7. Taking into account the variation of wavelengths with Re and the fact that

the conversion from the stenotic Reynolds number to the present one is not exact,

these values are quite close. In any case, these wavelengths are significantly longer than
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those observed in the planar backward-facing step (Blackburn et al. [2008a]) and curved

channel flow (Marquet et al. [2008b]), in which the optimal modes have a roll structure

whose wavelength is typically twice the outflow channel height.

One can likewise consider the Strouhal frequencies observed in various cases.

Instead of attempting a detailed comparison, we take a slightly different approach fol-

lowing closely the discussion by Marquet et al. [2008b]. Noting that the perturbations

are essentially packets of traveling waves, one can invoke the kinematic relationship

c = λSt, equivalently St = c/λ, between the speed of a packet c, the wavelength, and

the frequency. In the present study the bulk velocity in downstream pipe is 1/4 due to

the 1 to 4 increase in cross-sectional area. Perturbations traveling at the bulk speed

with typical wavelength, λ = 3.6 say at Re=1000, would be expected to have frequency

St = c/λ = 0.25/3.6 = 0.07. With an upper bound set by the bulk velocity in the

upstream pipe, we have 0.07 ≤ St ≤ 0.3, which encompasses the observed frequencies.

Marquet et al. [2008b] argue the same holds for the planar backward-facing step and

the curved channel. In all cases the Strouhal frequencies are of comparable magnitude

St ∼ 10−1; differences between the velocity scales in the different configurations hinders

a more precise comparison.

Given that the dominant mechanism driving the growth of perturbations is surely

inflectional instability of the shear layer, one could attempt to determine the frequency of

growing perturbations from a local analysis of the numerically computed shear layer. This

has been attempted for the backward-facing step and is further discussed by Marquet

et al. [2008b]. Basically the difficulty is that, even ignoring that the flow is not parallel,

the frequency determined from a local analysis depends on the station at which the

analysis is done and only the order of magnitude of the frequency is reliably determined.

In reality the flow is far from parallel in the vicinity of the separation point and likewise
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the dynamics of perturbations is initially quite complex. See for example Fig. 4.9 at

time t = 4.

We conclude with a brief discussion of related experiments. Our measurements

of recirculation length give a linear dependence on Re according to xr/h = 0.0876Re.

This can be considered to be a perfect match to the proportionality 0.088 reported in

experiments by Hammad et al. [1999]. The connection between our computations and

experiments with regard to the shear-layer oscillations is less satisfying at present. While

there are several mentions of shear-layer oscillations in the experimental literature on the

1 to 2 expanding pipe, quantitative details are lacking. Typically oscillations are associ-

ated with the breakdown of the linear scaling of the recirculation length with Reynolds

number (Back and Roschke [1972]; Iribarne et al. [1972]; Feuerstein et al. [1975]) and

there is no agreed value of the Reynolds number at which this occurs (Latornell and

Pollard [1986]). We believe that this is due to the fact that there is no linear instability

to define such a threshold for oscillation and the onset of oscillations detectable in ex-

periment will depend on factors such as the level of noise in the experiment. Oscillations

observed in some experiments, for example by Sreenivasan and Strykowski [1983] and

Mullin et al. [2009], are clearly of a very different character than the waves examined

here. The oscillations found in these experiments have a much lower frequency, by more

than an order of magnitude, than ours and are observed at Re above 1500.

There are two possible points of contact between calculations presented here

and published experiments. The first is the work of Latornell and Pollard [1986] on the

expanding pipe. They report small sinusoidal waves appearing in the shear layer. At

Re=750 these are observed to start at approximately 20 inlet diameters downstream

of the expansion, which is consistent with our optimal growth results from Table 4.4.

The other is the work of Griffith et al. [2008] on flow in a stenotic geometry. They

114



CHAPTER 4. TRANSIENT GROWTH THROUGH A SUDDEN EXPANSION

report shear-layer oscillations and in fact associate these with convective instability.

Moreover, for a blockage of 0.75 (corresponding to a 1 to 2 expansion following the

stenosis), they measure nondimensional oscillation periods roughly in the range of 0.2

to 0.3 for Reynolds numbers in the range 400 to 800. Converting to expanding pipe

units, this gives Strouhal frequencies in the range 0.4 to 0.6 for Re between 800 and

1600. Although larger, these frequencies are of the same magnitude as those we obtain.

Differences between the geometries could account for the discrepancy.

We hope that the detailed results presented here will motivate experimentalists

to look quantitatively at these transient dynamics in the future.
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Chapter 5

Global Approach to Convective

Instability in Flow past a Circular

Cylinder

5.1 Introduction

Incompressible fluid flow past a uniform circular cylinder has been widely studied, both

for its relevance to numerous engineering applications and its use as a fundamental

benchmark for computer simulations and their ability to resolve flow separation behind

bluff bodies. There is a wide range of numerical and experimental literature analysing the

stability aspects of this flow. As such, this flow provides a simple geometry on which

to explore local stability concepts, such as the onset of convective instability, using

global techniques. The flow is non-parallel and difficult to analyse in a local context,

emphasising the benefits of the global approach in exploring its transient dynamics.

Transient growth describes the increase, and the subsequent decrease in energy
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of a perturbation to a globally stable flow as it advects downstream. This is due to

the presence of a region of convective instability as established through local stability

theory. This mechanism is known to produce growth of many orders of magnitude in

separated flows with the axisymmetric sudden expansion (see Sec. 4), backward-facing

step (Blackburn et al. [2008a]) and stenosis (Blackburn et al. [2008b]) providing effective

examples.

The cylinder wake has appeared extensively in the literature. Both two-dimensional

and three-dimensional global stability analyses have been performed (Noack and Eck-

elmann [1994], Mutschke et al. [1997], Barkley and Henderson [1996]). The first two-

dimensional Hopf bifurcation occurs at Rec ≈ 47, based on the cylinder diameter and

the free-stream velocity. Several local stability analyses of the cylinder wake have been

conducted by Monkewitz [1988], Yang and Zebib [1989], Pier [2002] and Giannetti and

Luchini [2007]. These studies determine the appearance of an absolutely unstable region

at Reabs ≈ 25 but that the flow remains globally stable until the primary instability at

Rec ≈ 47. The onset of convective instability appears to have proved more elusive

to these asymptotic techniques due to the non-parallel nature of the flow immediately

behind the cylinder. Monkewitz [1988] reports a value of Recon ≈ 5. The onset of con-

vective instability appears in conjunction with the appearance of two separation points

behind the cylinder as identified by Noack and Eckelmann [1994].

More recently there has been interest in how local modifications to the underlying

base flow may affect the stability properties of the flow. Giannetti and Luchini [2007]

have conducted a sensitivity analysis in the linearly unstable regime and determined

those spatial regions with highest receptivity to mass and momentum forcing. Their

analysis shows that the greatest receptivity is located in the near-wake of the cylinder in

the region of absolute instability known as the wave maker, where the direct and adjoint
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modes overlap. This provides a source of self-sustained oscillations in the flow. Marquet

et al. [2008c] have also examined the sensitivity of the eigenvalues to modifications of

the base flow in the unstable regime. In particular, they discuss the control of the flow

through the addition of a secondary control cylinder which modifies the base flow so as

to stabilise it.

There have been a number of experimental studies of the cylinder wake in the

stable and marginally unstable regime, including Provansal et al. [1987], Zhang et al.

[1995] and Le Gal and Croquette [2000]. Le Gal and Croquette [2000] studied the

impulse response of the cylinder wake at subcritical Reynolds numbers, by inducing an

impulse through a small displacement of the cylinder. At Re = 35, they observe that

a wave packet is generated and subsequently advected downstream. The wave packet

increases in amplitude as it advects downstream indicating experimental evidence for

the presence of convective instability.

In a numerical context this flow provides an illustrative example of the impor-

tance of domain size on the accuracy of linear stability analysis and transient growth

calculations. The pertinence of this dependency is increased in light of a recent pub-

lication by Abdessemed et al. [2009] on the transient growth of the cylinder wake at

supercritical Reynolds numbers. The computational domain, while satisfactory for a

linear stability analysis, proves to be more seriously inaccurate in terms of computing

optimal growth. Marquet et al. [2008c] compute the direct and adjoint modes of the

supercritical flow, for which the adjoint modes are seen to extend far upstream of the

cylinder. Consequently, transient growth analysis ought to be significantly influenced by

upstream mesh geometry, even though the global stability analysis may be less so. More

critically, numerical convergence of the underlying basic flow, the downstream profile

of which is strongly affected by the cross-stream mesh size, is found to be of greater
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Li Lo

Lc

xs

U∞

Figure 5.1: Diagram of the cylinder geometry (not to scale), showing the inflow, outflow
and cross-stream dimensions referenced later. Also marked are the separation streamlines
and the stagnation point, xs.

importance in performing accurate transient growth analysis.

The purpose of the current study is two-fold. Primarily, it describes quantitatively

the global transient dynamics of the flow in the sub-critical regime. Moreover, aims to

highlight the importance of ensuring numerical convergence of the geometry when using

global techniques.

5.2 Formulation

The geometry under consideration is an open flow past a circular cylinder of infinite

length and diameter D. The geometry is homogeneous in the direction of the cylinder

axis and the direction of flow is normal to this axis. This is represented by the diagram

in Fig. 5.1. The formulation is similar to that described in earlier chapters, but we will

summarise it here for clarity.
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The fluid is governed by the incompressible Navier-Stokes equations

∂tu+ (u · ∇)u = −∇p+Re−1∇2u, (5.1a)

∇ · u = 0. (5.1b)

Here u is the fluid velocity, p is the static pressure and, without loss of generality, we

choose the density to be unity. The equations are non-dimensionalised by U∞, the

free-stream velocity, and D, the diameter of the cylinder. The Reynolds number, Re, is

therefore defined as

Re =
U∞D

ν
.

By considering the flow as a linear superposition of a basic flow, U , and an infinitesimal

perturbation u′, we may express the forward linearised Navier-Stokes equations as

∂tu
′ + (u′ · ∇)U + (U · ∇)u′ = −∇p′ +Re−1∇2u′, (5.2a)

∇ · u′ = 0. (5.2b)

The base flow, U , is computed by evolving Eqns. (5.1) until a steady-state is reached.

This Reynolds-number dependent solution is symmetric about the streamwise centre-

line and is computed for each value of Re considered. These solutions are then stored

for use in the linear stability and transient growth calculations.

5.2.1 Linear Stability Analysis

For a linear system,

∂tu
′ = Lu′,

stability is characterised by the location of the eigenvalues of L in the complex plane,

with those having positive real part indicating a globally unstable mode. The evolution
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of Eqns. (5.2) may be more compactly represented by the linear operator A which acts

as a state transition operator, advancing an initial state u′(0) to a future state u′(t) as

u′(t) = A(t)u′(0).

The leading eigenvalues of this operator are related to those of L, and hence can be

used to assess the stability of the basic flow.

5.2.2 Transient Growth

To study the effects of convectively unstable regions of the flow we examine the relative

growth in perturbation energy over a range of time horizons. The energy of a flow

perturbation is denoted as E(u′) = 〈u′,u′〉, where 〈·, ·〉 denotes the L2 inner-product.

The growth of energy over a time τ is then given by

G(τ) =
E(τ)
E(0)

=
〈A(τ)u′(0),A(τ)u′(0)〉

〈u′(0),u′(0)〉

= max
j
λj(A∗A)

which reduces the problem to the computation of the leading eigenvalues of the operator

A∗A. The adjoint linearised Navier-Stokes equations are

−∂tu∗ +DN∗ · u∗ = −∇p∗ +Re−1∇2u∗

∇ · u∗ = 0

and a derivation of this is provided in Sec. 2.4.2.

5.2.3 Numerical Method

Equations (5.1) and (5.2) are solved using Direct Numerical Simulation (DNS) employing

a split-step pressure-correction scheme (see Sec. 3.5). This is implemented in a spectral
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element code utilising an elemental decomposition of the domain in the plane normal

to the cylinder axis and a Fourier expansion in the axial direction for three-dimensional

simulations. The choice of mesh size and domain parameters is discussed in Sec. 5.3.

Eigenvalues of a given operator are computed through a modified Arnoldi algo-

rithm. In brief, repeated applications of the operator form a sequence of vectors from

which a low-dimensional approximation of the operator can be constructed and conse-

quently encapsulates sufficient information to approximate the leading eigenvalues and

eigenvectors of the system. The technique used to apply the operators A and A∗A is

that of a time-steppers approach (Barkley et al. [2008]) in which we advance an arbitrary

initial solution to a fixed time to perform a single iteration of the Arnoldi process. For

further details see Sec. 3.6.

5.3 Influence of Domain Size

We now present a detailed convergence study on how a spatially restricted domain affects

the base flow, linear stability and optimal growth calculations. Both the inflow length,

Li, and the cross-stream half-length, Lc, are investigated. The downstream mesh, Lo,

must be of sufficient length to accommodate the evolution of a perturbation for the

largest τ value under consideration during the transient growth analysis. Therefore,

based on U∞ and the maximum value of τ , we fix the outflow length at Lo = 125.

All calculations concerning the size of the domain are performed using a polynomial

order of 9. The specific choice of polynomial order to use for the transient growth

results reported in Sec. 5.4 is decided after the domain size is determined. Throughout

this convergence analysis the properties of the flow at three values of Reynolds number

(Re = 5, Re = 20 and Re = 46) will be considered, to ensure the mesh is capable of

resolving all solutions in the subcritical range.

122



CHAPTER 5. CONVECTIVE INSTABILITY IN FLOW PAST A CYLINDER

5.3.1 Base Flow

The accuracy of the base flow is partly assessed through examination of the stagnation

point location. Figure 5.2 shows the percentage error in the streamwise position xs,

as shown in Fig. 5.1, with varying mesh dimensions. While xs is linearly dependent on

Reynolds number (Giannetti and Luchini [2007]), the error in the location of this no-flow

point is predominantly independent of Reynolds number and is generally influenced by

the extent of the inflow. At low Reynolds numbers, the effects of cross-stream mesh

restrictions has a limited impact on the location of the stagnation point.

Examination of the cross-stream velocity profile at a fixed streamwise station,

is found to provide a more representative measure of base-flow distortion. Figure 5.3

shows such velocity profiles at a fixed cross-section of x = 3. It is evident that the

basic flow in this geometry is particularly sensitive to the size of the computational

domain. Contrary to the conclusions drawn from the analysis of the stagnation point,

constrictions on the cross-stream size of the mesh at low Reynolds number (Fig. 5.3(b))

lead to an especially inaccurate calculation of the basic flow. A limitation on inflow

length (Figs. 5.3(a) and 5.3(c)) is found to have a less significant effect in general.

It is known that no solution exists to Stokes flow around a circular cylinder due

to the impossibility of satisfying both the boundary conditions on the cylinder and those

at infinity (see Proudman and Pearson [1957]). It transpires that Stokes equations are

only valid in close proximity to the cylinder. This raises questions about the accuracy

of calculations of basic flows at low Reynolds numbers, especially within a domain of

limited geometry.
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Figure 5.2: Convergence of the base flow stagnation point with mesh size. There is
no discernible error in the location of the stagnation point with a cross-stream mesh
dimension of Lc = 45.

124



CHAPTER 5. CONVECTIVE INSTABILITY IN FLOW PAST A CYLINDER

 0

 1.5

 3

 4.5

 6

 7.5

 1  1.05  1.1  1.15  1.2  1.25  1.3

y

(a)
Li=10
Li=15
Li=25
Li=45

 0

 1.5

 3

 4.5

 6

 7.5

 1  1.05  1.1  1.15  1.2  1.25  1.3

y

(b)
Lc=7.5
Lc=15
Lc=25
Lc=45

 0

 1.5

 3

 4.5

 6

 7.5

 1  1.05  1.1  1.15  1.2  1.25  1.3

y

(c)
Li=10
Li=15
Li=25
Li=45

 0

 1.5

 3

 4.5

 6

 7.5

 1  1.05  1.1  1.15  1.2  1.25  1.3

y

U(y)

(d)
Lc=7.5
Lc=15
Lc=25
Lc=45

Figure 5.3: Streamwise velocity profiles of base flows at Re=5 ((a) and (b)) and Re=46
((c) and (d)), showing variation with Li ((a) and (c)) and Lc ((b) and (d)). For
variations in Li we fix Lc = 25. For variations in Lc we fix Li = 25.
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Figure 5.4: Convergence of critical eigenvalue with mesh size.

5.3.2 Linear Stability

Convergence of linear stability calculations is achieved through the determination of the

critical Reynolds number. Figure 5.4 shows that the inflow aspect of the domain is the

predominant source of inaccuracy, although the reported errors do not exceed 5%.

5.3.3 Transient Growth

The accuracy of transient growth computations is measured through the calculation of

the relative energy growth at a fixed time horizon of τ = 20. At this time horizon non-

negligible growth is expected across the range of Reynolds numbers under consideration.

Figure 5.5 summarises the percentage error introduced through domain size restriction.

Transient growth calculations in this geometry are found to be highly dependent

on the cross-stream dimension, especially at low Reynolds numbers. This is strikingly

evident from Fig. 5.5(b) where errors of ≈ 65% are observed for the smallest cross-

stream mesh. A sufficient computational domain upstream of the cylinder is required to

fully resolve the complete structure of the optimal disturbance. The computed optimal

126



CHAPTER 5. CONVECTIVE INSTABILITY IN FLOW PAST A CYLINDER

growth on meshes with limited inflow are found to be particularly in error at higher

Reynolds numbers.

Remarkably, the percentage error does not scale with Reynolds number, suggest-

ing these results are not shaped by a single factor, but rather by an inter-play of multiple

factors. It is important to note that linear stability and transient growth calculations

are both directly and indirectly influenced by the size of the computational geometry.

In a direct sense, the perturbation velocity fields will be distorted in close proximity to

boundaries while indirectly the perturbation is also dependent on the accuracy of the

underlying basic flow. This relationship is explored further in Sec. 5.3.5.

Based on this analysis, a computational domain with Li = 45 and Lc = 45 is

optimal to resolve all aspects of transient growth calculations to within 1% for the range

of Reynolds numbers under consideration. A diagram of the mesh is given in Fig. 5.6.

We will subsequently refer to this mesh as Mopt.

5.3.4 Polynomial Order

The polynomial order is chosen to ensure the necessary global refinement needed to

resolve the finer characteristics of the flow at the highest Reynolds number under con-

sideration. This is determined using a convergence study at Re = 46, the results of

which are summarised in Table 5.1. A polynomial order of 6 was found to be sufficient.

5.3.5 Direct and Indirect Effects of Geometry

The previous results highlight the importance of domain size for accurate calculations of

base flows, linear stability and transient growth. We now address the relative contribu-

tions of direct and indirect effects of domain constriction to the global stability analysis
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Figure 5.5: Convergence of optimal growth calculation with mesh geometry by (a) in-
flow length Li, and (b) cross-stream length Lc. Optimal growth is for a time horizon
of τ = 20. Percentage errors are shown relative to the calculation using Li = 65 and
Lc = 65, respectively.

Order Re=46

3 138.91
4 108.29
5 156.29
6 156.20
7 156.19
8 156.19

Table 5.1: Convergence of optimal growth with polynomial order on converged mesh
(Li = 45, Lc = 45, Lo = 125), with a time horizon of 20 at Re = 46.
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Figure 5.6: Elemental mesh determined necessary to attain an acceptable accuracy for
transient growth calculations. Dimensions are Li = 45, Lc = 45 and Lo = 125 (refer
to Fig. 5.1 for definitions).

and transient growth problems. We will proceed through examination of calculations

performed on both Mopt and a suboptimal mesh, Msub. Specifically, this geometry

matches that used in Abdessemed et al. [2009]. It has bounds −8 ≤ x ≤ 95 and

−12.5 ≤ y ≤ 12.5.

Global Stability Analysis

The effect on the global stability analysis of domain size is effectively determined through

examination of the critical Reynolds number of the first global bifurcation. Stability

analysis performed on the Msub mesh yielded a critical value of 45.58. This is lower

than the value reported on the Mopt mesh of 46.61 (see Sec. 5.4.2), although only by

2%. The global modes are typically downstream of the cylinder and so are predominantly

unaffected by the upstream domain directly. The modes take the form of streamwise

oscillatory structures with limited cross-stream spatial extent and so, in our study, they

are not directly susceptible to cross-stream domain width. In contrast, if the stability

calculation is performed on Msub, but using the base flow computed on Mopt, the error

is an order of magnitude smaller with the critical Reynolds number computed as 46.7.
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Transient growth analysis

In assessing the effects of domain size on the transient growth analysis, we will investigate

the individual contributions of the base flow and geometry to the error observed in the

calculation on Msub. On this mesh we will denote the base flow developed as Bsub and

the optimal perturbation as Psub. Similarly, the base flow Bopt and the perturbation

Popt will refer to those solutions computed on Mopt. The growth corresponding to the

direct evolution of Psub and Popt on their respective meshes is given in Table 5.2. This

table also details the evolution of Psub on the optimal mesh and under both base flows.

It is immediately apparent from Table 5.2 that there is a gross difference in the

reported transient growth on the two domains. In line with the analysis in Sec. 5.3.3,

the error in computing the growth on Msub is 32%. Reassuringly, evolving Psub on Mopt

(with base flow Bopt) gives a significantly smaller growth than that of Popt. This is, of

course, to be expected since Popt is, by definition, optimal for this domain.

We now address the direct effects of geometry on the evolution of a perturbation

and the effects of a distorted base flow. Using the optimal base flow Bopt with both

Msub and Mopt, we compare the evolution of the perturbation Psub on these domains.

For the suboptimal domain, Bopt is projected onto Msub to give Bopt-sub. The difference

in growth is 4.4%. This shows that there is a limited effect on the perturbation from the

domain size alone, given an accurate base flow. This is not surprising since the optimal

perturbations and their subsequent evolution occupy a narrow cross-stream extent. In

contrast, the difference in growth from using Bsub and Bopt on Msub is 62%. This

demonstrates that the predominant factor causing the artificially inflated growth values

is due to the effect of the distorted base flow.
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Mesh Base IC Growth

ML BL PL 2.54× 103

ML BL PS 1.85× 103

MS BLS PS 1.77× 103

MS BS PS 3.36× 103

Table 5.2: Effect of mesh geometry and base flow on the evolution of perturbations.
Growth values are for τ = 100 at Re = 45. Abdessemed et al. [2009] report a growth
of 3.357× 103 at τ = 102 on their mesh.

5.4 Quantitative Transient Growth Results

We now present results of a transient growth analysis in the subcritical regime.

5.4.1 Base Flows

Streamlines of the basic flow at Re = 40 are displayed in Fig 5.7. The flow separates

from two points on the rear of the cylinder, forming a pair of recirculation bubbles

directly behind the rear surface. The flow reattaches at the stagnation point xs. The

location of this point as a function of Reynolds number has been determined in many

previous studies (for example, Giannetti and Luchini [2007]) and the value established

in our convergence study matches this literature. Base flows are qualitatively the same

at all Reynolds numbers, except for those below Re ' 5 for which there is only a single

point of separation (Noack and Eckelmann [1994]). The stagnation point appears at

Re = 6.27, shortly after the flow separation point at the rear of the cylinder splits into

two. All base flows are symmetric about the streamwise centreline.

5.4.2 Global Stability

The global stability of flow past a cylinder has been reported in numerous studies with

recent calculations by Marquet et al. [2008c] and Giannetti and Luchini [2007] quoting

values of Rec = 46.8 and Rec = 46.7, respectively. As such it will not be discussed in
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Figure 5.7: Streamlines of the base flow at Re=40. Base flows at other Re are quali-
tatively similar. The main flow field uses a contour separation of 0.25, while a smaller
spacing of 0.01 was used to highlight the recirculation bubble. The entire computational
domain is not shown.

depth here. The value of Rec = 46.61 found in the present study is in good agreement

with the literature.

5.4.3 Transient Growth

We now discuss the transient dynamics of the strictly two-dimensional case (β = 0).

We seek the optimal initial flow disturbance which, when evolved under Eqns. (5.2) to a

time horizon of τ , gives rise to the greatest energy growth. Figure 5.8 shows the optimal

growth envelope for a selection of Reynolds numbers in the range of study. The curves

show the maximum possible energy growth at each value of τ . Relative growth of over

three orders of magnitude are observed at the highest globally stable Re. Each curve

is characterised by rapid growth, similar to that observed in other separated flows, as

the disturbance passes through the shear layer. The inflectional velocity profile through

the recirculation regions leads to the convective instability driving this growth. Once

the disturbance has passed the stagnation point, from a local perspective, it is in a

stable region of the flow. For subcritical values of Re this is followed by a very gradual

decay of energy, associated with the exponential decay of the dominant global modes.
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Figure 5.8: Energy growth of perturbations at different Reynolds numbers in steps of
Re = 5 in the range Re = 5 to Re = 50. The points indicate the computed values. The
dotted line shows the relative energy growth of the leading direct mode at Re = 50.

The uppermost line is the growth at Re = 50 - that is, above the onset of the first

global symmetry-breaking instability. After an initial rapid growth, the energy continues

increasing at an exponential rate in line with that of the leading global mode, as depicted

by the dotted line in Fig. 5.8.

Figure 5.9 highlights the Reynolds number and τ dependence of the optimal

growth. The thick black curve denotes the zero growth contour. For combinations

of Re and τ below this curve, any initial perturbation will exhibit no overall growth

relative to its initial energy. The contours further highlight the fast initial energy growth

and the slow decay for long τ . The interception of the zero-growth curve with the

y-axis indicates a critical Reynolds number Reg above which there is transient growth

for at least some τ . We report a value of Reg = 2.1 which is slightly lower than the

Re ≈ 5 computed by Monkewitz [1988] for the onset of a convectively unstable region.

The discrepancy could be accounted for by the limitations of the local analysis in the

strongly non-parallel region behind the cylinder.
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Figure 5.9: Contour plot of perturbation growth. The thicker black line denotes the
contour of zero growth.

The evolution of optimal perturbations under Eqns. (5.2) at three values of τ is

shown in Fig. 5.10. The circles denote the optimal growth envelope for Re = 40 and

the three curves touch this envelope at their respective τ values. The curves show most

rapid growth as the perturbation passes through the shear layer. The growth peaks

as the perturbation reaches the end of this convectively unstable region, which at this

Reynolds number roughly corresponds to the stagnation point (Pier [2002]). The energy

of the perturbation subsequently decays. The curve for τ = 65 corresponds to the choice

of τ promoting the highest growth at this Reynolds number. Notably the evolution of

the corresponding perturbation is nearly optimal for all time.

In Fig. 5.11 we consider the maximum growth attainable by a perturbation, not

only for all possible initial conditions, but across all time horizons. In particular, this is

the growth at a unique τ = τmax(Re). The form of the perturbation evolved to τmax

is representative of what might be most easily observed in an experimental setup of a

perturbed flow. The maximum growth approximately scales with exp(Re2) up to the

first bifurcation point at Rec ≈ 47. In this figure Re2
g is the interception of the curve
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Figure 5.10: Linear evolution of perturbations for three time horizons at Re=40. At
τ = 65 the energy growth is nearly optimal for all time.

with the x-axis, although the exact value is not clear from the figure.

Visualisations of the initial optimal perturbation for Reynolds numbers 20 and

40 are shown in Fig. 5.12. It is apparent that the optimal disturbance at Re = 40 is

confined closer to the cylinder than at low Reynolds numbers. We now linearly evolve

these initial disturbances in time to examine their developing structure. Figure 5.13

shows snapshots of this evolution after 100 time units. There is a clear distinction

between these two cases. At Re = 20, the disturbance is in the form of a single packet

which advects steadily downstream. After reaching a peak growth of 4.70 at a time of

28.8, the disturbance gradually decays. This decay rate is almost negligible and these

structures are transported for long distances with minimal energy loss, as is apparent in

Fig. 5.8.

At Re = 40, the structure is characterised by an oscillator driving the flow

directly behind the cylinder. This results in a long tail of sinuous oscillations behind

the disturbance, which resembles the downstream oscillations reported by Le Gal and

Croquette [2000] for Re = 35 in their experimental study. Again, there is negligible
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Figure 5.11: Maximum growth over all time horizons as a function of the square of
Reynolds number (not quite a straight line). The dotted line signifies the square of the
critical Reynolds number.

energy decay and consequently the structure is preserved far downstream. In a local

stability context, this is a region of local absolute instability just behind the cylinder

which is present at Re = 40, but not at Re = 20. This would align with the results of

Pier [2002] who reports the appearance of a region of absolute instability immediately

behind the cylinder at Re = 25.

The three-dimensional structure of the flow is now considered by introducing a

third variable into the parameter space. Growth over the range of span-wise wavenum-

bers is now considered and Fig. 5.14 confirms that for large τ , wavenumber zero is the

dominant mode for transient growth. However, for small τ < 8.0, the greatest growth

is seen in a wavenumber 0.0 < β < 1.0. Figure 5.15 shows growth as a function of β

and τ . As in Fig. 5.9, the thicker line denotes the zero-growth contour with positive

growth occurring for those values of τ to the left. The intersection of this curve with

the β-axis denotes a critical βg = 4.1±0.05 above which all wavenumbers decay. Thus,

disturbances in these high spanwise wavenumbers are not susceptible to the convective
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Figure 5.12: Contours of energy showing optimal initial condition at Re=20 (top) and
Re=40 (bottom), both for a time horizon of τ=20.
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Figure 5.13: Contours of energy showing evolved optimal perturbations at Re=20 (top)
and Re=40 (bottom), again for τ=20, linearly evolved to a time of t = 050.
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Figure 5.14: Growth of perturbations against wavenumber at Re=40. β = 0 is dominant
for long time horizons, but higher β may provide slightly larger growth at short time
horizons.

instabilities. Disturbances in wavenumbers β > 1.0 also exhibit a much more rapid

decay of energy than is observed for β = 0.

5.5 Discussion

We have accurately determined through global techniques the transient dynamics of flow

past a uniform circular cylinder. Global stability results agree with the results available

in the literature. Furthermore, our determination of the onset of convective instability

agrees well with existing local stability analyses of this geometry. The results give a

broad insight into the transient dynamics of this prototype flow. Transient growth on

the order of 103 is reported which, while considerably large, is comparatively small in

relation to highly separated flows in discontinuous geometries such as an axisymmetric

sudden expansion (see Chapter 4).

The optimal growth is observed for perturbations originating in the most sensitive

regions of the flow in close proximity to the cylinder. As a disturbance passes through the
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Figure 5.15: Contour plot of growth of perturbations for different spanwise wavelengths
of L = 2 ∗ π/β at Re=40. The thicker black line denotes the contour of zero growth.

recirculation regions immediately behind the cylinder, it rapidly gains energy, reaching

a maximum in the vicinity of the stagnation point. The recirculation region creates an

inflectional velocity profile which is the source of convective instability. Furthermore,

the effects of the onset of absolute instability have been identified through the evolution

of optimal perturbations at Re > 25.

The evolution of the optimal perturbation for τmax at a given Reynolds number is

found to be almost optimal for all time. This is typically not the case in other separated

flows and may simplify the control of these transient dynamics in the present geometry.

The optimal perturbations at different Reynolds numbers are found to differ in terms

of spatial extent. Those at low Reynolds numbers typically extend over a larger region

around the cylinder.

This study also highlights the importance of ensuring the numerical convergence

of the computational domain. Transient growth problems are particularly susceptible to

deficiencies in the extent of the mesh. This is true, not only in the downstream region,

but in the cross-stream and inflow dimensions too. Enforcing boundary conditions too
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close to the spatial support of the perturbation leads to direct distortion of the perturba-

tion field. Additionally, constricted domains lead to deformation of the underlying basic

flow. The cylinder wake is a prime example of a flow in which the necessary upstream

length is far greater than one might initially expect, since the adjoint modes extend far

upstream of the cylinder.

Abdessemed et al. [2009] examine transient dynamics of the cylinder wake above

the threshold of instability, but report the growth at Re=45 as an example of the stable

regime. This value is significantly larger than the value computed in the present study.

In particular, they report G(102) = 3.357×103, compared with G(98.5) = 2.547×103,

a difference of 32%. The primary difference between the problem formulations is the

extent of the computational domain. In light of the results in Sec. 5.3, the mesh used

by Abdessemed et al. [2009] incorporates insufficient inflow to fully resolve the optimal

initial condition, a problem which will affect both the stable and unstable regimes. The

optimal initial conditions close to Rec = 46.61 consist of decaying sinuous oscillations

upstream of the cylinder which, while comparatively small in energy, are important to the

evolution of the flow and inevitably susceptible to limitations on the upstream extent.

The convergence study suggests that geometrical constraints on the perturbation

itself do not wholly account for the discrepancies seen. While the disturbance has a lim-

ited cross-stream extent and is thus is not directly affected by a constricted domain, the

base flow is heavily distorted by this limitation. The distortion causes an increased veloc-

ity around the shear layer which culminates in heightened transport of the disturbance

by the base flow and consequently leading to an artificially large growth. In contrast,

global stability analyses are affected to a lesser extent by the size of the domain, with

distortion of the basic flow being the predominant source of error. Increased transport

of the perturbation and consequently a marginal increase in the growth associated with
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each eigenmode may account for the lower critical Reynolds number computed on a

smaller mesh.

In the next chapter we will examine the generation of turbulent puffs in a grad-

ually expanding pipe geometry.
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Chapter 6

Turbulent Puffs in a Gradually

Expanding Pipe

6.1 Introduction

Transition to turbulence in a circular pipe has intrigued physicists for over a century,

ever since the original observations of Reynolds [1883]. Reynolds noted that below a

critical value of a non-dimensional constant (now known as Reynolds number) a flow

subjected to any disturbance would recover laminar Hagen-Poiseuille flow, while above

this value sinuous oscillations could be seen. This limit was at Re ≈ 2000 and, even

when studied through highly controlled modern experiments, this value is considered

particularly accurate. Reynolds also observed that the flow could remain laminar if

unperturbed to a much higher Re ≈ 17000, although this limit has now been increased

considerably. He observed that in smaller tubes, the disturbance to steady flow would

occur intermittently in patches. These flashes, were later classified into puffs and slugs.

Turbulent puffs and slugs are types of turbulent transitional structures which,
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Figure 6.1: Schematic velocity traces for a puff (left) and a slug (right). The puff is
characterised by the non-distinctive leading edge (LE) defined by larger-scale structures.
The turbulent slug (right) has well defined leading and trailing edges (TE).

while localised in nature, possess fundamental differences in their structure and be-

haviour. We briefly state the characteristics of the two types. A schematic velocity

trace of the two phenomena is shown in Fig. 6.1.

Puffs are typically seen in experiments at low transition Reynolds numbers 2000 <

Re < 2700 (Wygnanski and Champagne [1973]) as the flow becomes conditionally un-

stable to disturbances, although this is typically an overestimate to that observed in

DNS. They are characterised by a distinctive upstream boundary (termed the trailing

edge) which advects with the flow at slightly under the mean velocity. The turbulent

state near the upstream boundary morphs into larger scale structures and waves before

eventually falling to the laminar state at the downstream boundary. This boundary is not

well defined. Puffs exhibit slow or negligible growth, since both boundaries advect with

similar velocities. In the case that it does not grow, the puff is termed an equilibrium

puff.

In contrast, a turbulent slug has both well-defined upstream and downstream

boundaries. These transitional pockets of turbulence form at higher Reynolds numbers

Re > 3500 in experiment (Wygnanski and Champagne [1973]). A notable difference

to puffs is that the downstream boundary moves faster than the upstream boundary,

especially at large Reynolds numbers. Consequently, slugs typically grow in size during
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their lifetime. The inner structure of a slug is similar to that of a fully-developed turbulent

flow and they contain none of the larger-scale features seen in puffs (Wygnanski and

Champagne [1973]).

Much of the existing literature on pipe transition has been predominantly ex-

perimental in nature, due to the considerable computational expense of numerically

simulating turbulent flows accurately. Experimental studies initially concentrated on

determining the upper critical limit for transition. The extensive investigation of Wyg-

nanski and Champagne [1973] focused on the intermittent behaviour around transition,

reporting on the characteristics and formation of these turbulent phenomena. Slugs are

found to develop at Re > 3500 with small magnitude disturbances, while puffs occur in

the 2000 < Re < 2700 range but require a disturbance of an order of magnitude greater.

A further study (Wygnanski et al. [1975]) describes the development of equilibrium puffs

at Re = 2200. These puffs were found to remain indefinitely and while their structure

is very different from turbulent pipe flow, their form is found to be independent of the

source disturbance.

Experiments by Bandyopadhyay [1986] provide a detailed description of the struc-

ture of puffs. The laminar flow enters the slower moving puff at the centre of the pipe

and the resulting shear flow leads to a train of vortices near the wall, which defines

the upstream boundary. The remainder of the conical puff is filled with vortices de-

caying in a helical motion. Later experiments by Darbyshire and Mullin [1995] report

that these can develop in the broader range 2100 < Re < 2400. They also speculate

that the downstream large-scale structures are decaying remnants of the slower moving

upstream boundary, rather than laminarisation caused by the turbulent regions creating

a reduction in Reynolds number.

More recent experimental work includes Peixinho and Mullin [2006], Mullin and
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Peixinho [2006] and Peixinho and Mullin [2007]. In particular, Peixinho and Mullin [2006]

study the destruction of an equilibrium puff in an otherwise laminar flow at Re = 1900

through the reduction of Reynolds number. They observe that the puff shrinks in size

and that the vigorous motion in the upstream boundary becomes detached from the

wall.

Numerical studies have only appeared in the literature during the last decade.

Shan et al. [1999] conducted one of the first direct numerical simulations of a puff and

a slug using a spectral element code. Their method replicates the experiments and their

results correlate well with the experimental data. They analyse the entrainment of fluid

establishing that in a puff particles are continuously exchanged with the surrounding

laminar flow, in agreement with the observations of Bandyopadhyay [1986]. Further-

more, they find the influence of initial conditions negligible, which is consistent with

experiments. Recently, Willis and Kerswell [2007] have numerically established statistics

of relaminarisation of turbulence in a pipe. This included confirming an exponential

distribution for the probability of a puff relaminarising.

Most experimental and numerical studies typically induce puffs, slugs and tur-

bulent flow through excitement of a laminar flow at a target Reynolds number. Alter-

natively, one might examine the process of laminarisation of a fully-developed turbulent

flow as the Reynolds number is decreased. This is the approach taken here. This study

aims to demonstrate a novel method of continuously generating turbulent puffs through

an effective drop in Reynolds number, prescribed by a gradual increase in pipe radius.

A constant flux is used ensuring the downstream Reynolds number is well-defined.
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6.2 Methodology

The flow in the pipe is governed by the incompressible Navier-Stokes equations

∂tu+ (u · ∇)u = −∇p+ ν∇2u, (6.1a)

∇ · u = 0 (6.1b)

where u is the fluid velocity, p is the static pressure and we take the density, ρ, to be

unity. The characteristic length and velocity scales are taken as the pipe diameter, D,

and the bulk velocity, Ū . As such the Reynolds number is given by

Re =
ŪD

ν
. (6.2)

6.2.1 Periodic Domain

Before pursuing the expanding pipe geometry, we will first generate a single puff in a

periodic pipe to study its structure and allow an effective comparison later. The geom-

etry used is a uniform pipe of length 30D with periodicity enforced in the streamwise

direction. Experimental techniques typically use a perturbation to an otherwise laminar

flow as a mechanism for generating a puff. Here, we will take a different approach and

gradually decrease the Reynolds number of a fully turbulent flow in a periodic domain. A

sequence of simulations are performed at gradually decreasing Reynolds numbers, each

restarted from the result of the previous computation. The Reynolds number needs to

be lowered gradually to prevent the flow undergoing a complete transition to a laminar

state.

6.2.2 Geometrical Configurations

We propose the use of a gradually expanding axisymmetric pipe for the generation of

turbulent puffs. A diagram of such a geometry is shown in Fig. 6.2 (not to scale).
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Figure 6.2: Geometry of the puff generator (not to scale).

The pipe has an inlet section of length Li and diameter Di. This diameter defines a

length scale for the upstream Reynolds number, Rei. A gradual expansion of length Le,

increases the size of the pipe to a diameter of Do. This is followed by an outflow of

length Lo at this diameter. We define the expansion factor η = Do/Di. The expansion

results in a diametral increase by a factor of η and a decrease of velocity by a factor of

η2. The effective Reynolds number of the flow after the expansion is then

Reo =
1
η
Rei. (6.3)

We will report in Sec. 6.3 the generation of puffs using two configurations of the ex-

panding geometry, defined by the expansion factor, η, and the expansion length, Le.

6.2.3 Numerical Techniques

The axisymmetric nature of the problem lends itself to the use of cylindrical coordinates

(see Blackburn and Sherwin [2004]). The axial-radial semi-plane is discretised using a

spectral element formulation, while a Fourier expansion is used in the azimuthal coordi-

nate. The number of Fourier modes is typically Nz = 32 or Nz = 64. The distribution

of mesh elements accounts for the spread of points with increasing radius and the neces-

sity to accurately resolve the boundary layer. A section of the mesh is shown in Fig. 6.3.

Elements are of equal width in the axial direction and increase in height proportionally
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Figure 6.3: Gradual expansion computational mesh. All elements are 0.5Di wide and
have heights as shown. The element distribution is scaled in proportion through the
expansion. On each element the solution is represented on a grid of quadrature points.

through the expansion.

The fluid is driven using flowrate control (see Sec. 3.5.4). In short, a scaled

solution to the Stokes problem is added to the velocity field at each timestep to ensure

the mass flux through each cross-section of the pipe remains constant.

6.2.4 Boundary Conditions and Turbulence Generation

Due to the non-periodicity in the streamwise direction, this domain requires a turbulent

field to be imposed at the upstream boundary. A copy boundary condition is used (see

Sec. 3.4) with boundary data being acquired from a cross-section of the pipe a distance

of Lc downstream of the inlet, to create a periodic region. This part of the domain is

initialised with a pre-computed turbulent field, computed using a periodic pipe of length

Lc.

6.3 Results

In this section we present the results of DNS for generating puffs at the laminar-

turbulence transition boundary. We first report the generation of a puff in a 30D
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periodic pipe using stepped decreases in Reynolds number and describe its formation

and structure. We will then present evidence of puff generation in a gradually expanding

pipe.

6.3.1 Puff Structure

Figure 6.4 shows a typical puff, at Re = 2050. This is formed through a gradual decrease

in Reynolds number of a fully-turbulent flow, initially at Re = 3000. Figures 6.4(a)

and 6.4(b) show the magnitude of streamwise vorticity and the magnitude of transverse

velocity, respectively. Figure 6.4(a) emphasises the strong vorticity in the boundary layer

caused by the shearing of the fast core flow with the slower-moving turbulence in the

outer layers of the pipe. It is at this trailing edge where the turbulent energy of the puff

is constantly replenished. The boundary-layer vortices are shed downstream, dissipating

into larger structures before becoming laminar. These shed vortices are drawn into the

centre of the pipe by the faster flow and this forms the conical shape characteristic of

a puff.

The streamwise velocity trace in Fig. 6.4(c) emphasises the sudden drop in core

velocity at the trailing edge of the puff, and the gradual recovery towards the leading

edge. The plot matches the typical form reported in the literature (for example, see

Willis and Kerswell [2007]). Figure 6.4(d) shows cross-sections of the puff at three-

diameter intervals, highlighting the variation with radius of the puff’s structure along its

length. Puffs at Re = 2050 are found to have a length of approximately 20D.

We now aim to simplify the generation and subsequent study of these transitional

structures through the use of a gradually expanding pipe to effect a similar gradual

decrease in Reynolds number within a single simulation.
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Figure 6.4: Turbulent puff at Re=2050 showing (a) streamwise vorticity magnitude,
(b) transverse velocity magnitude, (c) streamwise velocity along centreline of pipe, (d)
cross-sections through puff at intervals of 3Di. The vorticity and transverse velocity
plots are normalised and the scale shows two orders of magnitude.
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6.3.2 Large Reynolds Number Drop

To emulate a drop in Reynolds number similar to that of the periodic case above, we use

an expansion factor of η = 3
2 with an upstream Reynolds number of Rei = 3300. This

culminates in a Reynolds number reduction to Reo = 2200, over a length of Le = 30Di.

An inflow length of Li = 30Di is used with an outflow of length Lo = 90Di. The total

pipe is therefore 150Di long.

Initially, the turbulent upstream flow propagates through the expansion and into

the downstream region, but only begins to laminarise towards the end of the expansion

(see Fig. 6.5). The breakdown of the turbulent flow occurs through an increase in

the scale of the turbulent structures. Regions of the flow begin to laminarise leaving

turbulent pockets which continue to propagate downstream. The speed of the flow

in these laminar patches is higher than the mean advection speed of the turbulent

regions, especially in the centre of the pipe. This leads to a fast core flow which

penetrates the pockets of turbulence creating vortices in the boundary layer which are

drawn downstream and subsequently form a puff. By the end of the pipe at x = 150Di,

some of these pockets form stable puffs, while others simply decay.

Figure 6.5(b) shows a typical puff as observed in the downstream region of the

domain close to the outflow. At Re = 2200 the puff structure is present, but the

surrounding regions are not entirely laminar. This makes effectively distinguishing the

structure of the puff particularly difficult. To effectively observe puffs a lower Reynolds

number is required in the outflow.

6.3.3 Small Reynolds Number Drop

We now use a smaller expansion factor of η = 8
7 over a length of 70Di with an upstream

Reynolds number of Rei = 2200. This is sufficiently high for turbulence to be maintained
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Figure 6.5: Puff structure appearing at a downstream Reynolds number of 2200. The
inflow is at Re = 3300 and the expansion occurs in the first 50Di. The total length
is 150Di. (a) Full pipe. (b) Downstream puff. (c) Streamwise velocity profile. Vi-
sualisations show transverse velocity magnitude. The colour scale shows two orders of
magnitude.

153



CHAPTER 6. TURBULENT PUFFS IN A GRADUALLY EXPANDING PIPE

 1

 1.1

 1.2

 1.3

 1.4

 260  270  280

u
(t
)

t

Figure 6.6: Streamwise velocity trace at x = 250. It shows the puff in Fig. 6.7(d)
passing this point.

and the geometry results in a decrease in Reynolds number to Reo = 1925. An inflow

of 30Di is used but the outflow is chosen to be Lo = 200Di. The long outflow length

allows sufficient domain for the turbulent structures to develop and be analysed.

Figure 6.6 shows a streamwise velocity trace of a fully developed puff passing

a fixed streamwise station at x = 250, close to the end of the pipe. The trace is

characterised by the gradual drop in velocity starting from the leading edge of the puff,

followed by the rapid recovery at the trailing edge. This convincingly matches the typical

profile of a puff described in Fig. 6.1. A visualisation of the puff associated with this

trace is shown in Fig. 6.7(e).

Figure 6.7(d) shows the streamwise velocity along the centreline of the outflow

region at a fixed time instant. The grey region is representative of the pipe diameter at

each x position and indicates the location of the expansion. The plot is annotated with

snapshots of the various turbulent structures which have formed. Immediately after the

expansion the flow is still turbulent with no notable structure (Fig. 6.7(c)). Puffs are

found to form shortly after the expansion and, while irregular in the frequency of their
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appearance, typically remain stable once formed, propagating the length of the pipe.

Figure 6.7(b) shows such a puff, located a few diameters downstream of the end of the

expansion. While the regions of flow upstream and downstream of it are not particularly

laminar, the puff structure is already evident. Isolated puffs can be observed in the flow

as well as groups of two or more puff structures interacting with each other, such as

those shown in Fig. 6.7(a). Two puffs can be seen in close proximity, with the shedded

vortices of the rear puff being drawn through the trailing edge of the one in front.

Puffs develop as they travel along the outflow section of the pipe. Their struc-

ture consolidates and their trailing edge becomes more defined as the surrounding flow

becomes increasingly laminar. An example of a puff close to the end of the pipe is given

in Fig. 6.7(e). The trailing edge is strongly defined, as emphasised by the velocity plot in

Fig. 6.7(d). Cross-sections of the puff are given in Fig. 6.7(f) which highlight the change

in the location and scale of the turbulent flow along the length of the puff. The trailing

edge is at x ≈ 278 where the core flow becomes highly turbulent. The scale of the

structures can then be seen to increase downstream of this point. These cross-sections

both qualitatively and quantitatively match those in Fig. 6.4(d) confirming the presence

of the correct structure.

All puffs appear to form a consistent length of approximately 17.5Do, although

in those groups where the structures exhibit strong self-interaction the individual lengths

are difficult to distinguish. This length is shorter than that at Re = 2050. It was found

by Peixinho and Mullin [2006] that reducing the Reynolds number results in a shortening

of the puff.
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Figure 6.7: Puffs at Re=1925. All visualisations show magnitude of streamwise vorticity
and the scale is logarithmic, representing two orders of magnitude. (a) Two puffs in
the interval [172, 207]. (b) Newly formed puff in the interval [155, 170]. (c) The flow is
still turbulent immediately after the expansion in the interval [100, 115]. (d) Streamwise
centreline velocity. Grey area indicates pipe expansion (not to scale). (e) Fully-developed
puff near outflow in the interval [272, 292]. (f) Cross-sections through downstream puff
at intervals of 3Do, matching that used in Fig. 6.4.
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6.4 Discussion

The production of a continuous stream of turbulent puff structures has been achieved

in a single simulation using a gradually expanding non-periodic pipe, driven at a fixed

Reynolds number. The gradual expansion creates a continuous drop in Reynolds number

which allows the same transitional process to occur as observed in the periodic case. A

turbulent field is maintained at the inlet to the pipe through the use of a copy boundary

condition. The turbulence propagates along the pipe and begins to laminarise as it passes

through the expansion. A train of turbulent puffs is then observed in the downstream

region of the pipe. Puffs have been observed in this geometry at both downstream

Reynolds numbers of Re = 2200 and Re = 1925. The regions between individual

structures in the former case were not convincingly laminar. More acceptable results

were observed at Re = 1925, producing a sequence of isolated puffs in conjunction with

groups of two or more puffs.

From a computational perspective, the gradual expansion is an order of magni-

tude more costly per time step than the periodic pipe. While this is initially discouraging,

the expansion provides several benefits for examining the process of transition. It re-

quires less simulation time to produce a puff and provides a greater scope for examining

the formation of puffs due to their continuous formation in the pipe. A 30Di pipe will

typically provide one or two puffs, while twice this number can be observed in half the

simulation time in the proposed geometry. The expanding pipe also efficiently effects

the gradual decrease in Reynolds number which is time-consuming to achieve in the

periodic case. It is our experience that the Reynolds number must be decreased gradu-

ally to allow the formation of these transitional structures. A sudden drop in Reynolds

number typically induces a rapid relaminarisation of the flow.

The expanding pipe may provide fruitful avenues for further research into the
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behaviour of puffs and turbulence to laminar transition. The study of the laminarisation

of a puff could be conducted by initialising the inflow region of an expanding pipe with a

pre-computed puff. This could be compared with experimental studies such as Peixinho

and Mullin [2006]. Furthermore, the geometry could be reversed to study the transition

of a puff back to the turbulent state.
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Chapter 7

Summary and Future Work

Separated flows exhibit regions of convective instability which provide a mechanism for

strong transient growth of disturbances. In contrast to the asymptotic analysis, which

can be used to assess the local stability properties of parallel flows, a global approach

allows convective instability to be determined in a broader range of open flows through

the resolution of all aspects of the flow. In particular, the transient dynamics of highly

non-parallel flows in abrupt geometries or behind bluff bodies can be effectively analysed.

In this thesis we have examined the transient dynamics of two such prototype

flows: the sudden axisymmetric expansion; and the cylinder wake. Both these separated

flows exhibit strong transient growth, typically of many orders of magnitude. DNS of a

noise-perturbed flow in the axisymmetric expansion has been conducted which confirms

the linear analysis. The structures observed in both these flows have been visualised

demonstrating what should be observable through experiment. Pursuit of experimental

evidence for the observed dynamics would now be an important step forward.

The growth of small perturbations to flows due to convective instability may lead

to transition in flows and consequently cause problems for applications in industry. One
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important motivation for this work is in flow control, determining the most dangerous

perturbations to a flow and finding methods to control such a flow. Transient growth

analysis is a highly computationally intensive task, which requires numerous simulations

to map out the growth function in the Re− τ domain. Improving the efficienty of this

algorithm would be an important contribution to the field.

Finally, we have also examined the formation of puffs in the transition of pipe

flow. These are typically formed in experiment through an impulse to a laminar flow.

Computationally, we have described a novel formulation for the creation and study of

puffs from a turbulent flow, using a gradual increase in pipe radius to effect a gradual

drop in Reynolds number. The puffs produced in the simulations are consistent with

those produced using existing experimental and computational techniques in the litera-

ture. We have also described how further examination of puff decay could be achieved

through the use of our technique and how reversing the geometry could allow the study

of transition of a puff into a turbulent flow.
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Appendix A

Spectral Element Methods

The aim of this appendix is to collate the background details on spectral element tech-

niques which would otherwise dilute the concepts described in Chapter 3.

A.1 Jacobi Polynomials

The family of Jacobi polynomials are denoted by Pα,βn (x). They are a family of polyno-

mial solutions to the singular Sturm-Liouville problem. Their relevance to the spectral

element method is that they are orthogonal on the interval [−1, 1] in the Legendre in-

ner product, and as such provide a good expansion basis with computationally efficient

properties.

Definition The Legendre inner product of two functions f and g is defined as

(f, g) =
∫ 1

−1
f(x)g(x)dx. (A.1)

The following is a list of useful expressions and relations for Jacobi polynomials

which will be used later in this document. While in general Jacobi polynomials do not
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have an explicit representation, they can be evaluated through the following recursion

formula

a1
nP

α,β
n+1(x) = (a2

n + a3
nx)Pα,βn − a4

nP
α,β
n−1(x), (A.2a)

Pα,β0 (x) = 1, (A.2b)

Pα,β1 (x) =
1
2

[α− β + (α+ β + 2)x], (A.2c)

where the coefficients ain are computed as

a1
n = 2(n+ 1)(n+ α+ β + 1)(2n+ α+ β),

a2
n = (2n+ α+ β + 1)(α2 − β2),

a3
n = (2n+ α+ β)(2n+ α+ β + 1)(2n+ α+ β + 2),

a4
n = 2(n+ α)(n+ β)(2n+ α+ β + 2).

An alternative representation is the differential form

d

dx

[
(1− x)1+α(1− x)1+β d

dx

(
Pα,βn (x)

)]
= −λn(1− x)α(1 + x)βPα,βn , (A.3a)

λn = n(n+ α+ β + 1). (A.3b)

The derivative can be similarly found using a recursive technique

d

dx

[
Pα,β0 (x)

]
= 0, (A.4a)

b1n(x)
d

dx

[
Pα,βn (x)

]
= b2n(x)Pα,βn (x) + b3n(x)Pα,βn−1(x), (A.4b)

where the coefficients bin are computed as

b1n(x) = (2n+ α+ β)(1− x2),

b2n(x) = n [α− β − (2n+ α+ β)x] ,

b3n(x) = 2(n+ α)(n+ β),
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or using the following relation

d

dx
Pα,βn (x) =

1
2

(α+ β + n+ 1)Pα+1,β+1
n−1 (x) (A.6)

Further information can be found in Appendix A.1 of Karniadakis and Sherwin [2005].

A.1.1 Special Cases

Special cases of the Jacobi polynomials frequently used in the literature are:

• Legendre polynomials: α = β = 0,

• Chebyshev polynomials: α = β = −1/2.

A.2 Interpolation Polynomials

Definition Given a set of P + 1 points, an interpolating polynomial is an order-P

polynomial which is exactly satisfied at those points.

The pth Lagrange polynomial through a set of nodal points ξq is given by

hp(ξ) =

∏P
q=0,q 6=p(ξ − ξq)∏P
q=0,q 6=p(ξp − ξq)

. (A.7)

The following property holds: hp(ξq) = δpq.

A.3 Nodal Bases

The choice of interpolation points for a nodal basis has important numerical conse-

quences. Certain choices, as noted by Gauss, give rise to a highly accurate represen-

tation. The naming of these choices is based on the use of element end-point nodes

combined with the Gaussian quadrature interior points on the standard element. The

possible choices are:
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• Gauss: neither endpoint is included.

• Gauss-Radau: only one endpoint is included (usually −1).

• Gauss-Lobatto: both endpoints are included.

Combining this naming scheme with the choice of (Jacobi) polynomial, for which its

zeros are used to generate the interior points, gives the full name as demonstrated in

the following examples.

• The Qth order Gauss-Radau-Chebyshev scheme would consist of the point −1,

and the zeros of the (Q− 1)-order Chebyshev polynomial.

• The Qth order Gauss-Lobatto-Legendre scheme would consist of the points −1

and 1, with the zeros of the (Q− 2)-order Legendre polynomial.

A.3.1 Zeros and Weights for Nodal Bases

For nodal bases, the values of ξq and hence wq and dqr depend on the choice of scheme

used to select the nodes. We let ξα,βq,P denote the qth zero of the P th order Jacobi poly-

nomial Pα,βP . For the nodal schemes named above, the nodes, weights and derivatives

are computed as follows:

Gauss-Legendre

ξq = ξα,βq,Q, q = 0, . . . , Q− 1,

wα,βq =
2

1− (ξq)2

[
d

dξ
(Pα,βQ (ξ))

∣∣∣∣
ξ=ξq

]−2

, q = 0, . . . , Q− 1,

dqr =


(Pα,βQ )′(ξq)

(Pα,βQ )′(ξr)(ξq−ξr)
, q 6= r, 0 ≤ q, r ≤ Q− 1,

ξq
1−ξ2q

, q = r,
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Gauss-Radau-Jacobi

ξq =


−1, q = 0

ξα,β+1
q−1,Q−1, q = 1, . . . , Q− 1

wα,βq =
1− ξq

Q2
[
Pα,βQ−1(ξq)

]2 , q = 0, . . . , Q− 1

dqr =



−(Q−1)(Q+1)
4 q = r = 0,

Pα,βQ−1(ξq)

Pα,βQ−1(ξr

1−ξr
1−ξq

1
ξq−ξr q 6= r, 0 ≤ q, r ≤ Q− 1

1
2(1−ξ)

Gauss-Lobatto-Jacobi

ξq =



−1, q = 0

ξα+1,β+1
q−1,Q−2, q = 1, . . . , Q− 2

1, q = Q− 1

wα,βq =
2

Q(Q− 1)
[
Pα,βQ−1(ξq)

]2 , q = 0, . . . , Q− 1

dqr =



−Q(Q−1)
4 q = r = 0,

Pα,βQ−1(ξq)

Pα,βQ−1(ξr

1
ξq−ξr q 6= r, 0 ≤ q, r ≤ Q− 1

0 1 ≤ q = r ≤ Q− 2

Q(Q−1)
4 q = r = Q− 1

The nodes ξi are computed numerically (e.g. using the Newton-Raphson method),

and then the weights and derivatives are computed using the recursive formulae from

Eqns. (A.2) and (A.4).
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A.4 Modal Bases

Following on from the definition of a modal basis in Sec. 3.1.1, we provide an example

of a modal basis formed from Jacobi polynomials (see Sec. A.1). In the specific case

of α = β = 1, we construct a p-type modal expansion basis functions, ψp(ξ) on the

standard element as:

ψ1,1
p (ξ) =


1−ξ

2 p = 0(
1−ξ

2

)(
1+ξ

2

)
P 1,1
p−1(ξ) 0 < p < Q

1+ξ
2 p = Q

The choice of α and β affects the structure and numerical efficiency of the matrix equa-

tions developed later, which in turn affects the performance of the final implementation.

It is evident there is a wide choice of polynomial bases of both the nodal and

modal type, each with their particular benefits and flaws. The diagram in Fig. A.4

summarises a classification of different polynomial bases.

A.5 Global Assembly in 2D

The algorithms in Alg. 1 and Alg. 2 describes how to form the global assembly mapping.

Algorithm 1 performs the pre-processing stage, sorting the domain components into

interior and surface types. Alg. 2 constructs the actual assembly map. The procedure

for generating the interior lists is similar to that of the exterior lists and has thus not

been repeated.
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Algorithm 1 Algorithm to produce the global assembly mapping - preprocessing.

create empty edge lists E A (all), E S (surface), E C (common)
create empty point lists V A (all), V S (surface), V C (common)
{create a list of all edges in domain}
for each element e do

for k = 0 to k = 3 do
add edge[k] of e to E A

end for
end for
{extract interior edges}
for each edge x in E A do

for each edge y after x in E A do
if x = y then

add edge x to E C
remove edge x and edge y from E A

end if
end for

end for
{remaining edges are surface edges}
for each edge x in E A do

add edge x to E S
end for
{sort points into surface points and common interior points}
for each edge x in E S do

add first end point to V S
end for
for each edge point x in V do

if x not in V S then
add x to V C

end if
end for
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Algorithm 2 Algorithm to produce the global assembly mapping.

k p = 0, k m = 0
{add surface points to map}
for each x in V S do

for each element e do
for k = 0 to k = 3 do

y = point k of e
if x == y then

i = getAssemblyMapNodeIndex(y)
set A P[i] = k p
i = getAssemblyMapModeIndex(y)
set A M[i] = k m

end if
end for

end for
end for
k p += size(V S), k m += size(V S)
{add surface edges to map}
for each edge x in E S do

for k = 0 to k = Q− 2 do
i = getAssemblyMapNodeIndex(point k on edge x)
A P[i] = k p++

end for
for k = 0 to k = P − 2 do

i = getAssemblyMapModeIndex(mode k on edge x)
A M[i] = k m++

end for
end for
[ repeat similarly for common points/edges and interior points/edges ]
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Figure A.1: Tree diagram showing the different options for expansion bases on the
standard element. Solid arrows show the commonly used bases in spectral element
methods.

A.6 Efficiency of 2D Matrix Systems

We briefly review two efficiency improvements which can be made in computing the

Laplacian operator in two dimensions. The matrix described in Sec. 3.3.5 place a large

burden on both storage and numerical efficiency. In its current form, computing indi-

vidual elements of L on the fly would require significant computational cost. However,

pre-computing the matrix for each element would necessitate significant storage, espe-

cially with an increasing number of elements. To improve this, the matrix operation

can be rearranged to increase the separation between element-dependant and element-

independent aspects of the equation by exploiting the diagonal nature of Λk,l. The
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matrix equation in Eqn. (3.7) may be expanded and rearranged to give

L = [D1B]>Σ1 [D1B] + [D1B]>Σ2 [D2B]

+ [D2B]>Σ2 [D1B] + [D2B]>Σ3 [D2B]

Σ1 =
(
Λ2

1,1 + Λ2
1,2

)
W e

Σ2 = (Λ1,1Λ2,1 + Λ1,2Λ2,2)W e

Σ3 =
(
Λ2

2,1 + Λ2
2,2

)
W e

The diagonal matrices Σi can be pre-computed on each element upon construction and

only require O(Q2) storage. The matrices D1B and D2B are in terms of the standard

element and so need only be computed once. Finally, during the construction of the

global matrix system, each element can be computed as the O(Q2) operation

L[i][j] =
∑
k

D1B[k][i] ·Σ1[k][k] ·D1B[k][j] + . . .

A.6.1 Computing the Diagonal Coefficients

To generate the diagonal matrices Σi we must derive the values of the ∂ξi
∂ξj

. For the

two-dimensional case, consider the function u(x1, x2) on a general-shaped element,

dependent on two variables x1 = χ1(ξ1, ξ2) and x2 = χ2(ξ1, ξ2) where the χi’s are the

components of the linear mapping defined earlier. Using the chain rule, we can express

the total change in u(ξ1, ξ2) as

du(ξ1, ξ2) =
∂u

∂ξ1
dξ1 +

∂u

∂ξ2
dξ2

Thus for our general element dx1

dx2

 =

 ∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2


 dξ1

dξ2
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and inverting this system gives dξ1

dξ2

 =
1
J

 ∂x2
∂ξ2

−∂x1
∂ξ2

−∂x2
∂ξ1

∂x1
∂ξ1


 dx1

dx2


Secondly, if we also assume that the coordinate mappings χi are bijective mappings with

inverses

ξ1 = (χ1)−1(x1, x2) and ξ2 = (χ2)−1(x1, x2)

then we can apply the chain rule directly to these to give dξ1

dξ2

 =

 ∂ξ1
∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2


 dx1

dx2


Equating the coefficients in these matrices then gives expressions for the terms ∂ξi

∂xj
, in

terms of expressions we can compute directly, as follows.

∂ξ1

∂x1
=

1
J

∂x2

∂ξ2

∂ξ1

∂x2
= − 1

J

∂x1

∂ξ2

∂ξ2

∂x1
= − 1

J

∂x2

∂ξ1

∂ξ2

∂x2
=

1
J

∂x1

∂ξ1
.
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Spectral Element Heat Equation

Formulation

B.1 Solving the 1D Heat Equation with Forcing

We give a brief example of the application of the spectral element method to solving

the heat equation with a constant forcing, g, and Dirichlet boundary conditions,

∂u

∂t
= α

∂2u

∂x2
+ βg (B.1)

Expressing this in the weak Galerkin form gives(
v,
∂u

∂t

)
= α

(
v,
∂2u

∂x2

)
+ β(v, g)

The second-derivative can be rewritten using integration by parts.(
v,
∂u

∂t

)
Ω

+ α

(
∂v

∂x
,
∂u

∂x

)
Ω

= α

[
v,
∂u

∂x

]
∂Ω

+ β(v, g)Ω.

The boundary terms vanish, since the test functions vj are zero on Dirichlet boundaries.

We now express u and v in terms of the spectral expansion modes φp, giving rise to the
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matrix system

v>M
∂û

∂t
+ αv>L(2)û = βv>Mĝ

To complete the matrix equation, ∂û∂t is discretised using the multi-step scheme in equa-

tion (3.5). A first-order implicit scheme is suitable, giving the following matrix equation.

M
ûn+1 − ûn

∆t
+ αL(2)ûn+1 = βB>Wg

Sûn+1 = Mûn+1 + α∆tL(2)ûn+1 = Mûn + β∆tB>Wg

A full time-stepping algorithm including Dirichlet boundary conditions can be expressed

as the reduced system

S̃ ˜̂u
n+1

= M̃ ˜̂u
n

+ (αM −αS)û[0] + (βM − βS)û[Pg − 1] + β∆tB̃>W̃ g̃

B.1.1 Validation of Results

To ensure the results produced by the numerical method are valid, we compare with

an analytic solution to Eqn. (B.1). A brief derivation of an analytic solution using

the separation of variables follows to demonstrate the form of the expected solution.

Consider the heat equation with positive constant α.

∂u

∂t
= α

∂2u

∂x2

and express u(x, t) = X(x)T (t) to give

Ṫ (t)
T (t)

= α
X ′′(x)
X(x)

= λ

for a separation constant λ which gives two ODEs

Ṫ (t) = λT (t)

X ′′(x) =
λ

α
X(x)
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The two cases for λ = 0 and λ > 0 are either a trivial zero solution or non-physical. For

λ < 0, let λ
α = −ω2, giving the general solutions

X(x) = Acosωx+Bsinωx

T (t) = C exp(−αω2t)

Applying the boundary conditions of X(x) = 0 at x = ±2π gives A = 0 and B can be

absorbed into the time-dependant term in the solution, leaving partial solutions of the

form X(x) = sin(nx2 ), n = 0, 1, 2, . . . since ω = n
2 to satisfy boundary conditions. The

full general solution is then

u(x, t) =
∞∑
n=1

Cn exp
(
−n2αt

4

)
sin
(nx

2

)
For example, for an initial condition of u(x, 0) = sin(x), we have C2 = 1 and Ci = 0

for all i 6= 2. Thus, the solution should decay as

u(x, t+ ∆t)
u(x, t)

= exp(−α∆t)

and for u(x, 0) = sin(x/2), we have C1 = 1 and Ci = 0 for all i 6= 1, implying the

solution decays as

u(x, t+ ∆t)
u(x, t)

= exp
(
−α

4
∆t
)

The numerical solution for these initial conditions matches the decay rate computed

above as can be seen in Fig. B.1. These simulations used a time step of t = 0.01 and

a nodal expansion basis of order P = 16 with Q = 17 quadrature points.
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Figure B.1: Plot showing decay rate of numerical simulations of three different sine
waves. Gradients match the decay rate results found through the analytical solution.

B.2 Solving the 2D Heat Equation

We solve the 2D heat equation ∂u
∂t = ∇2u, which in expanded form is

∂

∂t
u(x, y, t) =

∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t) (B.2a)

u(x, y, 0) = u0 = sin(mx)sin(my) (B.2b)

on the domain Ω = [−π, π]×[−π, π] with zero Dirichlet boundary conditions u(∂Ω) = 0.

Typical m ∈ N, although any value for which u0 satisfies the boundary conditions is

acceptable.

The spectral element formulation follows in a similar manner to that described

in the one-dimensional formulation, resulting in the same high-level matrix equation,

although involving a matrix with more structure, as discussed earlier in this section.
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B.2.1 Validation of Results

To validate the spectral element solution, we derive the decay rate of the solution using

Fourier analysis. Consider the two-dimensional Fourier expansion

u(x, y, t) =
∑
k1

∑
k2

ûk1,k2e
ik1xeik2y.

Expressing Eqn. (B.2a) in terms of this expansion gives

∑
k1

∑
k2

∂ûk1,k2(t)
∂t

eik1xeik2y =
∑
k1

∑
k2

[
−k2

1ûk1,k2(t)eik1xeik2y

+ −k2
2ûk1,k2(t)eik1xeik2y

]
⇒

∂ûk1,k2(t)
∂t

= −(k2
1 + k2

2)ûk1,k2(t) for each k1, k2

⇒ ûk1,k2(t) = e−(k2
1+k2

2)tûk1,k2(0).

If we consider the initial condition given in Eqn. (B.2b) then by expressing the sine

function in terms of exponential functions as sin(z) = 1
2i(e

iz − e−iz) we get

u(x, y, 0) = −1
4
(
eimx − e−imx

) (
eimy − e−imy

)
= −1

4
(
eimxeimy − e−imxeimy − eimxe−imy + e−imxe−imy

)
.

Therefore, the initial condition consists of four modes, each with decay rate −(k2
1+k2

2) =

2m2, and so we expect our solution to decay at the same rate. Results from the spectral

element code are presented in Fig. B.2 which match the above analytical result.

176



APPENDIX B. SPECTRAL ELEMENT HEAT EQUATION FORMULATION

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  0.2  0.4  0.6  0.8  1

ln
 m

a
x
 (
u
(x

))

t

z=sin(x)sin(y)
z=sin(x/2)sin(y/2)
z=sin(2x)sin(2y)

Figure B.2: Plot showing decay rate of numerical simulations of three different two-
dimensional sine functions. The gradient matches the decay rate found through Fourier
analysis of the problem.
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