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Abstract

A spectral/hp element discretisation permits both geometric flexibility and beneficial convergence properties to be attained simul-
taneously. The choice of elemental polynomial order has a profound effect on the efficiency of different implementation strategies
with their performance varying substantially for low- and high-order spectral/hp discretisations. We examine how careful selection
of the strategy minimises computational cost across a range of polynomial orders in three dimensions and compare how different
operators, and the choice of element shape, lead to different break-even points between the implementations. In three dimensions,
higher expansion orders quickly lead to a large increase in the number of element-interior modes, particularly in hexahedral ele-
ments. For a typical boundary-interior modal decomposition, this can rapidly lead to a poor performance from a global approach,
while a sum-factorisation technique, exploiting the tensor-product structure of elemental expansions, leads to more optimal perfor-
mance. Furthermore, increased memory requirements may cause an implementation to show poor run-time performance on a given
system, even if the strict operation count is minimal, due to detrimental caching effects and other machine-dependent factors.
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1. Introduction

Spectral/hp element solvers are now widespread throughout
the fluid dynamics community, as well as in many other areas
of applied mathematics and engineering. Applications include
incompressible fluid problems such as biomedical flows and
flow control, turbulence models, structural mechanics, acous-
tics, electrophysiology, climate and geology modelling.

The benefits of using these high-order solvers stem from both
the geometric flexibility offered by the elemental decomposi-
tion of the domain combined with the high accuracy and prefer-
ential convergence properties of a spectral method. Unlike lin-
ear finite-element or pure spectral techniques spectral/hp meth-
ods exhibit a broad scope for optimisation, not only through
mesh refinement and polynomial order, but through careful
choice of evaluation strategies for a given numerical operator.
The importance of choosing the correct strategy in three dimen-
sions should not be underestimated, as is evident from the re-
sults presented in Section 3. Even in two dimensions, a change
of polynomial order by one may incur a runtime performance
penalty on the order of 50%, if the evaluation strategy is not
also adjusted to the optimal choice for the new discretisation.

In formulating a spectral/hp element method a domain is
divided into a tessellation K of non-overlapping elements on
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which one or more solution variables are expanded in terms of
polynomial functions up to a fixed order, P [1]. The typical
choice for the polynomial functions are Legendre polynomi-
als due to their orthogonality and favourable numerical proper-
ties [2]. The characteristics of these functions lie outside the
scope of this paper. The typical choice for P varies between
communities. Those from the finite-element community typi-
cally use expansions up to fourth-order [3], while those in the
spectral/hp element community typically consider polynomial
orders up to 15th order [2, 4]. For the purposes of this study we
consider polynomial orders in the range of 1 ≤ P ≤ 10, since
this is sufficient for our analysis.

In constructing a spectral/hp expansion each elemental re-
gion is mapped onto a reference element on which the basic
operations of integration and differentiation are defined. In two
dimensions, these are typically quadrilaterals or triangles, but
three dimensions encompasses a broader selection of hybrid
shapes. These include hexahedrons, prisms, pyramids and tetra-
hedrons. Each of these regions exposes its own performance
characteristics and while they offer great geometric flexibility,
they may introduce complexities in choosing an optimal evalua-
tion strategy. In this paper we will restrict ourselves to compari-
son of hexahedral and tetrahedral elements. Expansions in three
dimensions are formed as a tensor product of one-dimensional
polynomials. This permits the use of strategies which may dra-
matically reduce the operation count, and therefore improve the
overall performance, of a given operator when compared with
a naive local matrix implementation.
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Local elemental modes are extended to a global context
through direct stiffness assembly, typically with the enforce-
ment of a C0 continuity constraint. A sparse, invertible as-
sembly matrix describes the scattering of global coefficients
onto their corresponding local elemental coefficients allowing
the problem, and therefore the evaluation of the operators, to
be formulated in either a global or local context. This local-
to-global mapping is used to construct a global, bandwidth-
optimised, matrix system through which operations may be per-
formed across all elements simultaneously. Conversely, ele-
mental evaluation may be performed using a local matrix op-
eration, or by exploiting the tensorial nature of the expansions
and using a sum-factorisation approach [5]. The performance
benefits of the latter have been noted in the literature [6], and
the evaluation may be expressed using matrix-matrix multipli-
cations which may be further optimised by the BLAS subsys-
tem. The formulation of each of these strategies is detailed in
Section 2.

In any spectral/hp implementation, the specifications of the
system on which it is used, and the related software libraries,
will affect its performance. The wall time taken to solve a par-
ticular problem will be affected by factors beyond the theoret-
ical operation count, with the characteristics of the hardware
and external libraries (such as BLAS and LAPACK) at a given
problem size having a non-negligible effect. This paper will
therefore focus on discussing the run-time performance of the
various strategies to present a picture of the real performance of
such operations in a three-dimensional context.

2. Spectral h/p element discretisation

We first summarise our spectral/hp element formulation for
hexahedral and tetrahedral elements in reference-space. A more
detailed construction may be found in Karniadakis and Sherwin
[2]. We use a modified form of the Legendre basis in which
the interior modes are zero on the boundary through multipli-
cation by linear factors, while still maintaining the numerical
efficiencies of the expansion. This allows for greater numeri-
cal optimisation of global strategies through boundary-interior
decomposition.

2.1. Reference space expansions

For the hexahedral region we extend the modified set
of one-dimensional Legendre polynomials, {ψp(ξ)}, to form
a three-dimensional basis through a tensorial construc-
tion. The standard hexahedral reference region is Q3 ={
(ξ1, ξ2, ξ3) ∈ [−1, 1]3

}
on which the basis functions take the

form

φn(ξ1, ξ2, ξ3) = ψp(ξ1)ψq(ξ2)ψr(ξ3).

This defines the standard hexahedral elemental expansion,
Ωst(Q3). A solution defined on this region may be expanded

in terms of these functions as

u(ξ1, ξ2, ξ3) =
∑
n∈N

φn(ξ1, ξ2, ξ3)ûn

=

P∑
p=0

P∑
q=0

P∑
r=0

ψp(ξ1)ψq(ξ2)ψr(ξ3)ûpqr (1)

where û is the coefficient space representation. Note that in the
hexahedral expansion the ψp, ψq and ψr are independent of each
other.

The tetrahedral region, when defined in terms of orthogonal
Cartesian coordinates, is T 3 = {−1 ≤ ξ1, ξ2, ξ3, ξ1 + ξ2 + ξ3 ≤

−1}. This region does not have the constant limits necessary to
explot the tensorial expansion set out in the hexahedral case. To
fit the tetrahedron into this framework we employ a coordinate
transform[7] from the Cartesian coordinate system (ξ1, ξ2, ξ3)
onto a non-orthogonal coordinate system (η1, η2, η3). For the
triangular expansion [8], such a mapping is

η1 = 2
1 + ξ1

1 − ξ2
− 1

η2 = ξ2

Repeated application of this mapping to the orthogonal coordi-
nate system in three dimensions leads to a local mapping for
tetrahedra [9],

η1 =
2(1 + ξ1)
−ξ2 − ξ3

− 1,

η2 =
2(1 + ξ2)

1 − ξ3
− 1,

η3 = ξ3.

Under this collapsed coordinate system, the tetrahedral region,
T 3 = {−1 ≤ η1, η2, η3 ≤ 1}, is bounded by constant limits al-
lowing the tensorial basis construction to be used. The standard
tetrahedral expansion Ωst(T 3) is defined as

φn(ξ1, ξ2, ξ3) =
∑
n∈N

ψp(η1)ψpq(η2)ψpqr(η3).

A consequence of the coordinate transform is the creation of
two degenerate vertices which requires careful handling when
generating meshes to ensure alignment of the collapsed coordi-
nates. Furthermore, to maintain numerical efficiency, the one-
dimensional expansion basis in the second direction varies with
p, and similarly the corresponding basis in the third direction
varies with both p and q. This leads to the following solution
expansion

u(ξ1, ξ2, ξ3) =
∑
n∈N

φn(ξ1, ξ2, ξ3)ûn,

=

P∑
p=0

P∑
q=0

P∑
r=0

ψp(η1)ψpq(η2)ψpqr(η3)ûpqr. (2)
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2.2. Local and global expansions

To represent a solution on an arbitrary local elemental region,
Ωe we construct a bijective linear mapping, χe

i : Ωst → Ωe. We
assume the domain consists entirely of non-deformed elements
and therefore leads to a map with constant positive Jacobian on
each element,

x1 = χe
1(ξ1, ξ2, ξ3),

x2 = χe
2(ξ1, ξ2, ξ3),

x3 = χe
3(ξ1, ξ2, ξ3).

If the faces of the elemental regions were instead defined by
non-linear iso-parametric functions, the Jacobian would be de-
pendent on the quadrature point.

A continuous Galerkin formulation dictates a degree of con-
nectivity between the individual elements, typically in the form
of a C0 continuity condition. The boundary/interior decompo-
sition of the elemental modes simplifies this construction since
all interior elemental modes are themselves globally orthogo-
nal. Therefore, given our tessellation K of elements, each with
N elemental modes, the solution on the entire domain can be
represented as

u(x1, x2) =
∑

m∈Ng

Φm(x1, x2)ûg
m,

=
∑
e∈K

∑
n∈N

φe
n(x1, x2)ûe

n,

where Φm are the Ng global modes. The mapping of local
degrees of freedom to global degrees of freedom may be suc-
cinctly expressed as a highly sparse invertible local-to-global
assembly matrix,A,

ûl = Aûg.

2.3. Evaluation strategies

The structured nature of the spectral/hp formulation allows
for several approaches to evaluating numerical operators. In
particular we will be concerned with the relative performance
of computing a backward transform from coefficient space to
physical space, an inner product, as well as the evaluation of
mass and Helmholtz operators. We consider evaluating these
operations using a global matrix operation, a sequence of lo-
cal elemental matrix operations or through exploitation of the
tensorial basis using sum-factorisation.

In the global context a sparseNg ×Ng matrix is constructed
which directly solves for the global coefficients. This approach
is typical of finite element formulations in which all modes are
essentially elemental boundary modes and results in a signifi-
cantly lower operation count than handling each element indi-
vidually. At higher orders, the global matrix rapidly becomes
very large, although substructuring techniques [10] can be used
to dramatically improve the efficiency of this approach.

The remaining two evaluation strategies are performed at the
elemental level. The global coefficients ûg are scattered onto

their corresponding local coefficients ûl with which the opera-
tion is evaluated elementally as

ŷe
m =

∑
n∈N

ae(φe
m, φ

e
m)ûe

n ∀(m, e) ∈ (N ,K).

Here we use ae(v, u) to represent a general bi-linear operator
typical of a weak Galerkin formulation of a PDE. The resulting
vector, ŷ is then reassembled to give the global solution.

The sum-factorisation strategy[5] exploits the tensorial na-
ture of the elemental basis. For simplicity we will consider just
the backward transform in the hexahedral region in detail. The
other operators may be expressed in a similar form. The expan-
sion basis defined in Equation (1) can be reorganised as follows

u(ξ1i, ξ2 j, ξ3k) =

P∑
p=0

ψp(ξ1i)


P∑

q=0

ψq(ξ2 j)

 P∑
r=0

ûpqrψr(ξ3k)


 .
(3)

In hybrid regions, the inter-dependence of the one-dimensional
modes in the tensorial construction leads to a restriction on the
ordering of the factorisation of Equ. (2). However, this does
not prevent the same technique being applied to these regions.

Further to the reduction in operation count, the summation
can be expressed as a sequence of matrix-matrix multiplica-
tions. To see this we define the order of the elemental modes
ûpqr in the vector û to be such that p (rows) runs fastest, fol-
lowed by q (columns), and r (stacks) runs slowest. Let Û[P]
define a P×P2 matrix where each column corresponds to a row
of coefficients in û; that is û[iP : (i + 1)P − 1], 0 < i < P2.
The backward-transform operator from Equation (3) can now
be expressed as a sequence of matrix-matrix multiplications,

U[P] =

[(
Û>[P]B

>
0

)>
B>1

]>
B>2 = B1(Û>[P]B

>
0 )B>2 .

The other operators may be expressed in a similar way. For
example, the inner product operator and mass-matrix operators
become

Û[P] =
[
B>0 w(U[Q])B1

]>
B2,

and

Û[P] =
[
B>0 w

(
B1

[
Û>[P]B

>
0

]
B>2

)
B1

]>
B2,

respectively, where w(U[P]) applies the quadrature metrics to
the coefficients.

2.4. Implementation and test system

The specific spectral/hp implementation used is Nektar++ 2,
written in C++. The matrix-matrix and matrix-vector linear al-
gebra operations are performed using the reference BLAS and
LAPACK implementations available on the test system (Mac
Pro with two 2.26Ghz 4-core processors, 2MB L2 cache, 8MB
L3 cache, 16GB RAM) using dgemm and dgemv, respectively.
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Figure 1: Comparative performance of (a) backward transform, (b) inner product, (c) mass matrix and (d) Helmholtz operators on a mesh of 64 hexahedral elements.
All results are normalised by the local elemental performance for comparison. The break-even points apparent in this figure are largely independent of the choice of
h and so this result is representative of larger numbers of elements.
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Figure 2: Absolute comparison of runtimes for the Helmholtz operator using
64 hexahedral elements. The number of microseconds required to evaluate the
Helmholtz operator once is shown.

P Global Local Sum-Fac.
Backward Transform 1 - 2-
Inner Product 1 - 2-
Mass Matrix 1-2 3 4-
Helmholtz Matrix 1-2 3-6 7-

Table 1: Table of optimal strategy selection for different operators on hexahe-
dral meshes up to P = 10.

3. Results

Figure 1 shows the runtime performance of hexahedral ele-
ments for the three strategies and four numerical operators. We
make a comparison of the strategies relative to the intermedi-
ate local elemental matrix strategy for clarity of comparison.
In this figure, the results are computed using a cube mesh of 64
hexahedral elements, although the optimal strategies and break-
even points do not significantly change with variation in h. We
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Figure 3: Absolute comparison of runtimes for the Helmholtz operator using
384 tetrahedral elements. The number of microseconds required to evaluate the
Helmholtz operator once is shown.

P Global Local Sum-Fac.
Backward Transform 1-2 3-4 5-
Inner Product 1-3 - 4-
Mass Matrix 1-4 5-10 -
Helmholtz Matrix 1-4 5-10 -

Table 2: Table of optimal strategy selection for different operators on tetrahe-
dral meshes up to P = 10.

summarise the strategy break-even points for hexahedrons in
Table 1.

An immediate observation is that the global matrix approach
is only optimal at low-orders, typically order 1 or 2 polyno-
mials. This in itself is not surprising as the operation count is
far lower than for an elemental approach. However, the dom-
inance of elemental boundary modes in three-dimensional el-
ements continues to much higher orders, suggesting a global
strategy may still have a lower operation count. At high orders
it becomes rapidly sub-optimal, although it is surprising this
approach does not provide better performance at orders as low
as three. Figure 2 shows an absolute comparison of runtimes
— measured in microseconds — for the three strategies when
applied to the Helmholtz operator. Interestingly, the global run-
time saturates at a rate not much higher than that of the local
elemental strategy. This can be attributed to the performance
gain provided by the multi-level static condensation (substruc-
turing) employed in the global matrix implementation.

The performance of the sum-factorisation strategy is poor
at low orders, particularly for the more complex mass and
Helmholtz operators. In such cases the performance difference
in relation to the global strategy could be as high as two orders
of magnitude. The local elemental approach is typically only
optimal for low to intermediate orders when performing com-
plex operations such as those involving differentiation.

Figure 4 demonstrates a slight shift away from local strate-
gies for tetrahedral meshes, with a global matrix approach giv-
ing the best performance up to fourth order for some opera-

tors. Sum-factorisation is particularly poor in this geometry
when used with the mass and Helmholtz operators. At low or-
ders, it can be up to three orders of magnitude slower than the
global approach. This is due to the necessity of using a series
of matrix-vector operations, rather than more optimised matrix-
matrix operations, in the sum-factorisation to handle the inter-
dependence of the basis modes in the second and third dimen-
sion. Consequently this eliminates the benefits of cache locality
present in matrix-matrix operations. Again we summarise the
strategy break-even points for tetrahedra in Table 2.

In comparing the performance of hexahedra and tetrahedra
we observe the relative performance of the local matrix and
global matrix approaches are quite similar for the backward
transform and inner product. For more complex operations
tetrahedral operations benefit from global strategies to a higher
polynomial order, although for a large portion of the polyno-
mial order spectrum, the local matrix approach is optimal.

4. Discussion

We have summarised the comparative performance of hex-
ahedral and tetrahedral spectral/hp element discretisations for
a range of polynomial orders commonly used in different com-
munities. Operations within the spectral/hp formulation may be
evaluated in either a global or local framework. Furthermore, in
the local context, the tensorial construction of the elemental ba-
sis modes allows for the choice of sum-factorisation or elemen-
tal matrix evaluation. Ideally, a spectral/hp element code util-
ising a tensorial basis should support all three evaluation tech-
niques to ensure a high performance over a broad range of poly-
nomial orders. As with the two-dimensional case [11], the gen-
eral principle is to use global strategies at low orders, local ele-
mental strategies at intermediate orders, and sum-factorisation
at high orders. This falls in line with the general approach taken
by the various academic and industrial communities using low-
and high-order finite element techniques. However, as these re-
sults demonstrate, there is no fixed rule applicable to all prob-
lems and the type of operation and elemental shapes involved
are key factors in determining an optimal evaluation strategy
for a given polynomial order on a particular system.

The dominance of elemental boundary modes in low-order
expansions means a global approach should always offer the
greatest performance. The implementation of the global strat-
egy employs a multi-level static condensation technique which,
through substructuring of the global degrees of freedom associ-
ated with elemental boundaries, allows a bandwidth-optimised
matrix system to be produced. This system can be solved con-
siderably faster than the original full or banded matrix sys-
tem adding significant performance to this approach. At high
polynomial orders the larger number of modes rapidly leads
to large elemental matrices which are outperformed by a sum-
factorisation approach for some operators. This is not surpris-
ing since the elemental operators are true three-dimensional op-
erators which require O(P6) floating-point operations to apply,
while the sum-factorisation approach consists of three matrix-
matrix multiplies, each requiring just O(P4) floating-point op-
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Figure 4: Comparative performance of (a) backward transform, (b) inner product, (c) mass matrix and (d) Helmholtz operators on a mesh of 384 tetrahedral elements.

erations. This is indeed the strength of the sum-factorisation
approach.

The boundaries between the various strategies are not
uniquely defined and they depend on the specification of the
hardware and any performance enhancements offered by the
operating system and linear algebra libraries. Certain systems
support the implicit parallelisation of BLAS operations which
can dramatically accelerate various large matrix operations and
consequently shift the strategy boundaries by several polyno-
mial orders.

We conclude the discussion by comparing these results with
a similar study in the two-dimensional case [11]. In both a com-
parison of the quadrilateral and hexahedral regions, as well as
the triangular and tetrahedral regions, we see a strong similarity
between the relative runtimes across all four operators. There is
a slight shift of the break-even points towards the lower end of
the polynomial spectrum in the three-dimensional cases. This is
attributable to the number of modes increasing as P3 rather than
P2. The relative performance of the sum-factorisation at higher
orders is consequently much greater in the three-dimensional
case, while being especially poor at low orders.

5. Conclusions

This study has shown that the choice of strategy for the eval-
uation of operators in three dimensions is critical to attain the
best performance from a spectral/hp element solver. Essen-
tially, the differing performance of the various strategies is em-
phasised to a much greater extent in three dimensions and great
care should be taken to select the best strategy for each operator
on a given system.
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