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Abstract. There is a growing interest in high-order finite and spectral/hp element methods using
continuous and discontinuous Galerkin formulations. In this paper we investigate the effect of h-
and P -type refinement on the relationship between runtime performance and solution accuracy.
The broad spectrum of possible domain discretisations makes establishing a performance-optimal
selection non-trivial. Through comparing the runtime of different implementations for evaluating
operators over the space of discretisations with a desired solution tolerance, we demonstrate how
the optimal discretisation and operator implementation may be selected for a specified problem.
Furthermore, this demonstrates the need for codes to support both low- and high-order discretisa-
tions.
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1 Introduction
Spectral/hp element methods have become a mainstream technique for the solution of partial dif-
ferential equations (PDEs). Their ability to handle complex geometries, provide localised refine-
ment in regions of high solution gradient and attain convergence at exponential rates makes them
a valuable tool in a wide variety of applications across academia and industry. These originally
included problems in fluid dynamics [11], but spectral/hp element methods are now used in many
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other fields such as studies of electromagnetics [6], shallow-water problems [1] and structural dy-
namics [9].

Spectral/hp element methods can be considered as a high-order extension of the traditional
low-order finite element methods. They present greater scope for achieving fast convergence of
a solution by both refining the mesh (h-refinement) and increasing the order of the polynomial
expansions (P -refinement) used to represent the solution. Global spectral techniques can be con-
sidered as the limit of P -refinement on a single element. The notion of high order is understood
differently depending on the context. Those practising h-type refinement consider high-order ex-
pansions to be anything up to fifth-order [7, 16] while at the other end of the spectrum, the global
spectral community would consider expansion orders in the region of 100 to be relatively mod-
est [5]. In contrast, the spectral/hp element community [8, 3] would place high order in the re-
gion of 15th-order. Spectral/hp discretisations offer a broad performance-tuning capacity, not only
through choice of element shape, mesh refinement and expansion order, but through a choice of
different implementations for evaluating operators. In a mathematical context, operator evaluation
refers to a matrix-vector product, but numerically we may evaluate this operation using a single
global matrix, a series of local elemental matrices, or a sum-factorisation approach [10] through
exploitation of the tensorial nature of the elemental expansion basis. The resulting size of the
parameter space for discretisation and operator implementation is the primary motivation of this
work.

Cantwell et al. [2] examined the runtime performance of a spectral/hp implementation in ac-
tioning four fundamental operators in three dimensions (including the backward transform and
evaluation of the Helmholtz linear differential operator). They found that choosing the correct
implementation strategy for a given discretisation was essential when evaluating the different op-
erators. This choice also affects solver performance considerably when using iterative solvers
and the choice of discretisation controls the solution accuracy. In solving a given PDE using a
spectral/hp element framework, one typically strives to achieve a required level of accuracy in
the solution. Therefore, one must use a suitable (h, P )-discretisation which achieves this. Further-
more, one would like to minimise the runtime cost of the calculation. For each (h, P )-discretisation
there exists an optimal evaluation strategy for each mathematical operator [2] and so we therefore
seek the (h, P )-discretisation, from the space of those which provide acceptable accuracy, which
minimises the runtime cost when using the optimal implementation. In practice, other factors may
influence the selection such as memory limitations, but we discount these for the purposes of this
study.

In this paper we establish how one can select the optimal discretisation for solving an elliptic
problem, the Helmholtz equation, to a given threshold of accuracy. To achieve this we minimise
the runtime cost of evaluating the Helmholtz operator through variation of the discretisation and
choice of evaluation strategy across the space of (h, P )-discretisation. We stress that in this study
we optimise only the low-level evaluation of the Helmholtz operator required as a building block
for an iterative solver and not the complete iterative solution of the linear system. The choice of
solver and preconditioner would add an extra layer of complexity onto the analysis. The paper is
organised as follows. In Sec. 2 we summarise the spectral/hp element formulation and describe
the three operator implementation strategies which may be adopted for a particular discretisation.
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We also describe the example problem used to demonstrate the optimal discretisation selection.
In Sec. 3 we investigate how the optimal combination of mesh size and expansion order may
be selected to solve the example problem to a prescribed level of accuracy in minimal runtime.
Finally, we discuss the consequences and limitations of the work in Sec. 4.

2 Methods

2.1 Spectral/hp element framework
The spectral/hp element framework and the tensorial construction of hexahedral and tetrahedral
elements is well-established and is documented extensively elsewhere ([8, 11, 12, 13]). Therefore,
we only give a brief summary of the formulation here.

A potentially geometrically complex domain is partitioned into a tessellation of elemental sub-
domains. In a three-dimensional setting we consider an element Ωe to be either hexahedral or
tetrahedral in shape, although prisms and square-based pyramids may also be used. For each Ωe, a
mapping χe : Ωe → Ωst maps points in the physical elemental subdomains onto the corresponding
shape in a reference space, Ωst. The reference-space hexahedral and tetrahedral regions are defined
as

Q3(ξ) =
{

(ξ1, ξ2, ξ3) ∈ [−1, 1]3
}
,

T 3(ξ) = {(ξ1, ξ2, ξ3)| − 1 ≤ ξi, i = 1, 2, 3; ξ1 + ξ2 + ξ3 ≤ −1} ,

respectively. For the latter, a coordinate transform [4, 12] leads to a representation of the tetrahedral
geometry with fixed limits as

T 3(η) =
{

(η1, η2, η3) ∈ [−1, 1]3
}
.

On each reference element, the solution for a given element is expressed in terms of a fixed
basis of three-dimensional functions, {φn}, constructed as a tensor product of P one-dimensional
polynomials {ψp}. This leads to the following expansions on the reference elements

Q3 : u(ξ) =
∑
n

φnûn =
∑
p

∑
q

∑
r

ψp(ξ1)ψq(ξ2)ψr(ξ3)ûpqr, (2.1)

T 3 : u(η) =
∑
n

φnûn =
∑
p

∑
q

∑
r

ψp(η1)ψpq(η2)ψpqr(η3)ûpqr. (2.2)

The nature of this construction allows for the sum-factorisation evaluation strategy [10] to be
employed, even in the tetrahedral region, which leads to a higher performance in some circum-
stances [2]. However, to ensure only the minimum necessary degrees of freedom are used in the
tetrahedral case (an extension to three dimensions of the triangular case shown in Fig. 1) an inter-
dependency between the one-dimensional modes in the second and third coordinate directions is
introduced. This negatively affects the performance of the sum-factorisation strategy in tetrahedra
when compared to hexahedra.
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Figure 1: Two-dimensional triangular modes φpq(ξ1, ξ2) are constructed as a tensor product of
one-dimensional modes ψp(η1) and ψpq(η2).

In a continuous Galerkin spectral/hp element formulation the C0-continuity requirement is im-
posed across elemental boundaries to enforce the required connectivity. This leads to a global
formulation of the problem in which each of the elemental modes are considered as global func-
tions and assigned a global numbering. An assembly matrix A maps this global mode numbering
onto the corresponding local elemental mode numberings,

ûl = Aûg.

This is simplified if the polynomial functions used in the construction of the basis support a bound-
ary/interior decomposition. In this case all elemental interior modes are zero on the element bound-
aries, and consequently interior modes on different elements are globally orthogonal. This leads
to a global matrix system that exposes significant structure which may be exploited using sub-
structuring techniques [14] to improve the performance of global operations.

We conclude the formulation with an overview of the implementation strategies with which we
may evaluate numerical operators. As shown in [2] for the three-dimensional case, and in [15] in
two dimensions, careful selection of the implementation strategy is essential to achieve the best
performance at a given (h, P )-discretisation. As well as global operations and local elemental
operations the tensor-product construction of the elemental basis modes allows for a third method
of implementation known as sum-factorisation [10]. Therefore, the three methods we consider for
evaluating operators are

• Global matrix evaluation,

• Local elemental matrix evaluation,
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Figure 2: Diagram of the three evaluation strategies: global matrix operation (a), local elemental
operations (b) and sum-factorisation (c).

• Local elemental sum-factorisation.

A diagrammatic representation of these is given in Fig. 2 showing the global approach (Fig. 2(a))
and the two elemental approaches (Fig. 2(b) and (c)), as well as the elemental decomposition of
the domain.

The global approach evaluates all degrees of freedom in the domain simultaneously through the
use of a global matrix system. The local strategies perform the evaluation at the elemental level.
The sum-factorisation approach factorises the fully three-dimensional O(P 6) elemental operation
as a series of three one-dimensional O(P 4) operations. This provides significantly improved per-
formance with some discretisations [2], reducing both memory storage and computational cost.
This is not always the case, and with some linear differential operators with certain discretisations
it may provide a significantly lower performance than the local matrix or global strategies. To
illustrate the sum-factorisation implementation, consider the backward transform operation for the
hexahedral region in Eqn. 2.2. This is factorised as

u(ξ1i, ξ2j, ξ3k) =
P∑

p=0

ψp(ξ1i)

{
P∑

q=0

ψq(ξ2j)

{
P∑

r=0

ûpqrψr(ξ3k)

}}
. (2.3)

In matrix form, and following the notation described in [2], the three-dimensional backward trans-
form,

u = Bû ≡ (B0 ⊗B1 ⊗B2)û,
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a tensor product of the one-dimensional backward transforms B0, B1 and B2, may be expressed
as a sequence of three matrix-matrix multiplications,

qP1P2;Q0

0 =
[
ûP0;P1P2

]>
B>0 ,

qP2Q0;Q1

1 =
[
qP1;P2Q0

0

]>
B>1 ,

uQ0Q1;Q2 =
[
qP2;Q0Q1

1

]>
B>2 ,

u = uQ0Q1Q2;1.

Here, a vector ûP0;P1P2 denotes an P0P1P2-length column vector arranged as a matrix of dimen-
sions P0×P1P2. We note that, for example, reshaping qP1P2;Q0 to qP1;P2Q0 requires only a change
in the stride and does not necessitate the reordering of data in memory. In this form, the operation
may be computed particularly efficiently at higher orders in the hexahedral region, especially if an
optimised BLAS is available.

2.2 Example problem
The problem considered is that of solving the Helmholtz equation

∇2u− λu = f,

on the unit cube [0, 1]3 with λ > 0. This can be written more compactly as

Hu = f (2.4)

with positive-definite H = ∇2 − λ. This is a typical calculation encountered in a broad range
of applications, such as in the solution of the incompressible Navier-Stokes equations, and there-
fore makes an effective example of the optimisation techniques which may be applied within a
spectral/hp framework. We optimise the choice of (h, P )-discretisation so as to attain the best
performance when evaluating the matrix-vector product Hũ, where H is the spectral/hp discreti-
sation of the continuous operatorH, while ũ denotes an intermediate residual vector in an iterative
conjugate gradient algorithm. Repeated calculation of this matrix-vector product dominates the
iterative solution of Eqn. 2.4. The domain is equipped with suitable Dirichlet boundary conditions
appropriate to the forcing function f . For this study we consider the forcing function to be of the
form

f = −(λ+ 3n2π2) sin(nπx) sin(nπy) sin(nπz), (2.5)

which has the exact smooth solution

u(x, y, z) = sin(nπx) sin(nπy) sin(nπz). (2.6)
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The integer n parametrises the family of problems, with high frequency forcing functions leading
to larger solution errors. These are measured in the L2-norm and defined as

E =

[∫
Ω

(uexact − u)2

] 1
2

.

For each (h, P ) pair, f is projected onto the spectral/hp discretisation, the time taken to evaluate
Hũ is measured and Eqn. 2.4 is solved for u. The solution error is calculated as the difference
between this solution and a discretisation of the analytic solution. This error is calculated using
30 quadrature points, rather than the P + 1 points necessary to support an order P basis, to avoid
poor measurement through aliasing effects with low-order expansions. The choice of n controls
the solution frequency and high frequency solutions will be captured less accurately by a fixed
discretisation. While for increasing n there is a quantitative difference in the convergence of the
error as the discretisation is refined, the qualitative picture remains comparable. Therefore, for the
results presented in the following section, the choice of n = 3 is used.

2.3 Test system
The dependence on hardware of the timings makes the specification of the system particularly rel-
evant. All calculations presented in this paper are conducted on the same Mac Pro 64-bit system
with dual quad-core 2.26GHz Intel Xeon processors and 16GB system memory. The implementa-
tion of BLAS is the Accelerate framework distributed with OS X. Matrix solves, used to determine
the solution accuracy of a given discretisation, are computed using iterative methods. The tolerance
for the iterative procedure is set to 10−14 to ensure the solution accuracy is correctly determined
for all discretisations considered.

3 Optimal Strategy in three dimensions
We define the optimal strategy for an (h, P )-pair to be the strategy which minimises runtime for
that discretisation. This is shown for hexahedral and tetrahedral elements in Fig. 3 and will be
the strategy used in selecting the optimal discretisation. In summary, global strategies offer better
performance at low expansion orders, while sum-factorisation or local-matrix approaches offer
better performance in high-order regimes.

Figure 4 shows logarithmic contours of runtime (dotted lines) overlaid with logarithmic con-
tours of solution error (solid lines) measured in theL2-norm. The first three plots (Fig. 4(a-c)) show
contours of runtime for sum-factorisation, local elemental evaluation and global evaluation. Fig-
ure 4(d) shows the minimum runtime of these strategies for each discretisation, that is the runtime
for the optimal strategy as described in Fig. 3. Contours of error are the same on all plots in the
figure. The apparent distortion of the 10−3 error contour in the hexahedral case is an artifact of the
(h, P ) = (1

3
, 4) case representing the n = 3 solution particularly accurately due to the alignment

of the h-mesh with our chosen solution. A similar artifact may be observed at (h, P ) = (1
3
, 6).
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Figure 3: Optimal implementation strategies for the space of (h, P ) discretisations on (a) hex-
ahedral and (b) tetrahedral elements. As expected, the global strategy (GM) offers the highest
performance for low-order expansions, while local-matrix (LM) and sum-factorisation (SF) strate-
gies offer better performance at high orders.

We begin by briefly relating our present understanding of strategy performance from the results
for the hexahedral region presented in Cantwell et al. [2], to the data in Fig. 4. They observe the
sum-factorisation strategy for the Helmholtz operator performs poorly at low orders. In Fig. 4 this
is apparent from a quantitative comparison of the runtime contours across the first three plots. The
global strategy performs best at low orders, again notable from the low runtime-contour values.
The vertical orientation of the runtime contours at low expansion orders suggests that this strategy
also scales well with increasing mesh density in this low-order regime. This is in contrast to the
sum-factorisation contours which are more diagonally oriented and therefore support scaling with
polynomial order. A final point to note from the first three implementation plots is that for the local
elemental and global strategies the runtime contours are similarly oriented and with similar contour
separation. This aligns with the observation from Cantwell et al. [2] that the relative increase in
runtime of the global strategy with polynomial order reaches a plateau of approximately twice the
runtime of the local elemental approach.

We next examine how the optimal discretisation may be selected for the three strategies sepa-
rately. For the case of the sum-factorisation, the orientation of the contours of runtime compared
with the contours of error leads to an optimal discretisation consisting of a small number of high-
order elements. This is true independent of the desired solution accuracy. In contrast, the global
strategy is more complicated. The runtime and error contours are largely parallel leading to a
broad spectrum of discretisations with favourable performance. However, for large error toler-
ances the marginally optimal choice is to favour mesh density over high order, while for small
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Figure 4: Contour plots showing the runtime of a single operator evaluation (dotted lines)
and L2-error (solid lines and fixed across all plots) in solving the Helmholtz problem for each
(h, P )-combination using hexahedral elements. The three evaluation strategies are shown: sum-
factorisation (a), elemental matrices (b) and global matrix (c). For the global matrix (c), contours
above 105 are not shown due to the problem size exceeding the memory of the test system. A com-
parison with the optimal strategy chosen for each discretisation is shown in (d), where the filled
circle marks the optimal discretisation to attain a solution with a 10% error tolerance, while the
open circle indicates the optimal discretisation for 0.01%.
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tolerances the exponential convergence dominates leading to high order providing better perfor-
mance. The local elemental approach is more interesting still. For a more relaxed error tolerance
neither h-refinement or P -refinement is dominant and often a middle-ground discretisation is more
appropriate. However, as with the global strategy, high order dominates when accuracy is required.

The final sub-figure, Fig. 4(d), shows the comparison for the optimal strategy. This essentially
merges the results from Fig. 4(a)-(c) to show the discretisation which offers the best possible
performance. The character of the optimal strategy contours can be seen to contain aspects from the
three base strategies, most notably from the global strategy at low orders and the sum-factorisation
strategy at high orders. Of course, in selecting an optimal discretisation only discrete selections
of h and P are possible and the intersection of the grid lines denotes the available choices. In
particular, we highlight the optimal discretisation for a 10% error tolerance (marked by the filled
circle on the figure), and the optimal discretisation for a 0.01% tolerance (marked by the open
circle). We will discuss these choices in the next section.

We now address the analysis of tetrahedral elements in Fig. 5. The format of the plots in this
figure is identical to Fig. 4, showing error and runtime for the three base strategies and the optimal
case. A comparison of the performance for the different strategies is again given in Cantwell et
al. [2]. The selection of optimal discretisation for these strategies is much more straightforward.
For the sum-factorisation strategy a high-order approach is favoured in all cases, while for the local-
elemental strategy high order is the better approach in all but cases requiring low solution accuracy.
For the global approach a low-order finite element discretisation offers the best performance. The
latter is most likely a consequence of the multiplicity of the degrees of freedom in a tetrahedral
mesh.

For the optimal implementation, the approach to take is dependent on the solution accuracy
required, in much the same way as for the hexahedral case. With a high tolerance of error, one
should select a low-order discretisation, while for greater accuracy high-order elements are essen-
tial for optimal performance. Again, we show the optimal strategy for the tetrahedral case and
mark the optimal discretisations for a 10% and 0.1% error tolerance. Finally, it can be noted that
qualitatively, hexahedral elements offer better performance over tetrahedral elements for this par-
ticular problem with a difference of approximately half an order of magnitude in runtime for both
the 10−1 and 10−4 error contours.

4 Discussion
The selection of an optimal discretisation for a problem can be appreciated to be a non-trivial
task. It is dependent not only on the strategy employed by the spectral/hp solver, but on the na-
ture of the problem and the desired accuracy. In this paper we have computed and analysed how
careful selection of the discretisation influences performance of a spectral/hp element solver. The
Helmholtz problem provides an effective demonstration of the complexities and caveats of choos-
ing discretisation and implementation to attain the maximum performance to the required accuracy.
The discrete nature of the parameters in this process also complicates matters and hinders a precise
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Figure 5: Contour plots showing the runtime of a single operator evaluation (dotted lines)
and L2-error (solid lines and fixed across all plots) in solving the Helmholtz problem for each
(h, P )-combination using tetrahedral elements. The three evaluation strategies are shown: sum-
factorisation (a), elemental matrices (b) and global matrix (c). A comparison with the optimal
strategy chosen for each discretisation is shown in (d), where the filled circle marks the optimal
discretisation to attain a solution with a 10% error tolerance, while the open circle indicates the
optimal discretisation for 0.1%.
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rule being formed. Nevertheless, the results do provide valuable guidelines to the approach which
should be followed and significant conclusions may still be drawn from these figures.

Figures 4(d) and 5(d) are the culmination of this analysis where the lowest runtime across
the three implementations is selected for each (h, P )-combination. We can directly read off the
optimal discretisation with an error tolerance of 10%. For both hexahedral and tetrahedral elements
the optimal strategy (which corresponds to a global matrix evaluation in this case) is to use linear
finite elements to represent the solution. Interestingly, this is in contrast to what was found in the
analysis of the two-dimensional case [15]. If instead we needed a much higher accuracy of 1%,
the answer is less obvious and we should take more care. For hexahedral elements, the minimal
runtime along the contour is approximately 102.3. Of course, we are in fact limited to discrete
choices of h and P and consequently h = 1

7
, P = 2 is the optimal choice here with a runtime of

102.4. We also quote the optimal choice for 0.01% accuracy as being (h, P ) = (1
2
, 7).

Finally, we note some limitations of the results presented. It must be remembered that this
study, as with any other in which measurements of performance are considered, is both problem
and hardware dependent. The exact optimal discretisation determined through this analysis may
change when the analysis is performed on a range of alternative architectures. Additionally, dif-
ferent problems may favour particular implementation strategies leading to a performance shift. It
would be of interest to quantify the extent to which different problems, for example those without
infinitely smooth solutions, affect the selection of the optimal discretisation. Finally, in practice
the full solution time of the Helmholtz problem will depend upon the choice of iterative tech-
nique employed. The timings presented here reflect only the low-level matrix-vector operation
which typically forms the dominant sub-step in these techniques. However, the process and gen-
eral trends presented here should help guide the selection process and highlight the essential need
for modular codes which support both low- and high-order discretisations.
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