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Results are presented from a numerical study of transient growth experienced by infinitesimal
perturbations to flow in an axisymmetric pipe with a sudden 1–2 diametral expansion. First, the
downstream reattachment point of the steady laminar flow is accurately determined as a function of
Reynolds number and it is established that the flow is linearly stable at least up to Re=1400. A direct
method is used to calculate the optimal transient energy growth for specified time horizon �, Re up
to 1200, and low-order azimuthal wavenumber m. The critical Re for the onset of growth with
different m is determined. At each Re the maximum growth is found in azimuthal mode m=1 and
this maximum is found to increase exponentially with Re. The time evolution of optimal
perturbations is presented and shown to correspond to sinuous oscillations of the shear layer.
Suboptimal perturbations are presented and discussed. Finally, direct numerical simulation in which
the inflow is perturbed by Gaussian white noise confirms the presence of the structures determined
by the transient growth analysis. © 2010 American Institute of Physics. �doi:10.1063/1.3313931�

I. INTRODUCTION

The dynamics of flow through abrupt geometrical expan-
sions is of both practical importance and fundamental inter-
est. The axisymmetric expansion,1–6 in particular, is a primi-
tive geometry occurring in numerous engineering and
industrial settings. It is also relevant to biomedical applica-
tions as a model of flow through arterial stenoses.7–15 At a
fundamental level, this geometry, together with the closely
related planar expansion16–18 and backward-facing step,19–23

serve as prototypes for understanding the dynamics of flow
separation. Over the past four decades, studies of these flows
have addressed issues such as reattachment lengths,1 symme-
try breaking,5 and time dependence.24

The focus of this paper is the transient linear dynamics
of the 1–2 axisymmetric expansion. We show that for
values of the Reynolds numbers well below any linear insta-
bility, the flow strongly amplifies suitable infinitesimal per-
turbations. We argue that transient linear amplification is a
potentially more important effect in this flow than linear
instability.

Much of the previous research on the axisymmetric
expansion has concentrated on the steady, laminar flow
regime and the accurate determination of the separation and
subsequent reattachment. Both experimental1–5,24,25 and
computational25–27 studies find that the reattachment length
varies linearly with Reynolds number in the steady regime,
with the proportionality depending on whether the inlet flow
is a flat profile or a fully developed Hagen–Poiseuille
profile.28 Separation and reattachment in the turbulent regime
have also been studied.16,29

Recent, carefully controlled experiments by Mullin
et al.5 on the 1–2 expanding-pipe flow with a fully developed
inlet profile report a steady-state breaking of axisymmetry at
Re=1139�10. The Reynolds number is defined in terms of
the inlet diameter and bulk velocity. This symmetry breaking
is the rotational analog of the steady symmetry breaking ob-
served in the symmetric planar expansion.17,18,30 In the pla-
nar case, there is now a general agreement between compu-
tation and experiment on the bifurcation. However, as
we show here, linear stability computations reveal that there
is no bifurcation of the perfectly symmetric problem at
Reynolds numbers comparable to those reported in the
experiments.5

Many experimental studies report unsteadiness and os-
cillations in the expanding-pipe flow.1,5,24,31,32 There is, how-
ever, no agreement as to the Reynolds number at which os-
cillations first arise. The explanation for the discrepancy has
been attributed to the sensitivity of the expansion to the inlet
profile.4,26,28

The aim of this paper is to quantify and highlight the
importance of transient growth of infinitesimal perturbations
in expanding-pipe flow. Figure 1 illustrates the essential idea.
Small initial disturbances �here drawn in the inlet upstream
of the expansion� are amplified in the region containing the
separated axisymmetric shear layer following the expansion.
The amplified disturbances are then advected into the down-
stream pipe where they eventually decay. This leads to a
situation in which the flow may be highly sensitive to incom-
ing perturbations, but only transiently. Hence, even though
the flow is linearly stable, in that all perturbations eventually
decay and likewise all eigenvalues are negative, the flow
may be highly susceptible to small perturbations. From a
local perspective, one would attribute the transient dynamics
to a localized region of convective instability within the flow
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resulting from an inflectional velocity profile.33–35 In the con-
text of a direct numerical simulation �DNS� study, where one
does not resort to local parallel approximations but instead
fully resolves all aspects of the flow, one understands and
analyzes the transient dynamics as a transient growth prob-
lem or equivalently as a singular value problem. For ex-
ample, recent studies have highlighted the importance of
transient dynamics due to localized regions of convective
instability for the backward-facing step,23 curved channel
flow,36 and steady and pulsatile stenotic flow.9,10 This is the
approach taken in the present work.

II. METHODOLOGY

A. Governing equations and flow geometry

The flow is governed by the incompressible Navier–
Stokes equations

�tu + �u · ��u = − �p + Re−1 �2u , �1a�

� · u = 0, �1b�

where u is the fluid velocity and p is the modified or kine-
matic static pressure. The equations are written in dimen-

sionless form with the velocity normalized by Ū, the bulk
velocity of the incoming flow, and lengths normalized by the
diameter of the inlet pipe D. Thus the Reynolds number is
the bulk Reynolds number of the inlet pipe flow given by

Re= ŪD /�, where � is the fluid’s kinematic viscosity.
To avoid possible confusion when reading the following

material, it is useful to emphasize here the approach taken to
nondimensionalization. Except where indicated otherwise,
all quantities reported employ the normalization used above
in defining the Reynolds number. In particular, this means
that lengths are presented in terms of the inlet pipe diameter,
D. The exception we make to this rule is in recording down-
stream reattachment points, where step height h=D /2 is also
used as a measure of length. This exception is made to fa-
cilitate comparison with previous works. Throughout the pa-

per, times are in units of D / Ū.
The pipe geometry naturally lends itself to using cylin-

drical coordinates, which are denoted �x ,r ,��. Here x is used
for the axial coordinate since this corresponds to the stream-
wise direction, with x=0 at the expansion location. The fluid
velocity in these cylindrical coordinates is thus written
u= �ux ,ur ,u��.

Ideally the flow geometry would be infinite in the
streamwise direction. In practice, the computational flow do-

main � consists of a finite inflow region of length Li up-
stream of the expansion and a finite outflow region of length
Lo downstream of the expansion as in Fig. 2. For sufficiently
large Li and Lo, as used in this study, results are independent
of these lengths and the flow approximates the infinite case.

We impose a fully developed Hagen–Poiseuille incom-
ing profile, which in nondimensional form is given by
u=2�1−4r2�ex. We use no-slip boundary conditions on all
walls of the pipe and impose a stress-free outflow boundary
condition at the downstream end of the pipe. Thus, the
boundary conditions for the flow problem are

u���i,t� = 2�1 − 4r2�ex, �2a�

u���w,t� = 0 , �2b�

ex · �u���o,t� = 0, p���o,t� = 0, �2c�

where ��i is the inlet boundary at x=−Li, ��w is the
boundary corresponding to the rigid walls of the inlet pipe,
outlet pipe and expansion, and ��o is the outlet boundary at
x=Lo. Variations on these boundary conditions will appear in
the stability and transient growth problems as well as for
studies of noisy inflow and will be discussed at the appropri-
ate place.

B. Linear stability and transient growth problems

We briefly summarize the main aspects of the linear sta-
bility and transient growth problems. Some further details for
the particular problem are given in Sec. II C. General ac-
counts of the time-stepper approach used here may be found
elsewhere.37,38

The first step in the analysis is to obtain base flows U. In
this study, these are steady, two-dimensional, axisymmetric
solutions to Eq. �1� of the form U= �Ux�x ,r� ,Ur�x ,r� ,0�. For
the range of Re considered in this paper, these solutions are
unique functions of Re.

The next step is to consider the evolution of infinitesimal
disturbances u� to the base flow. These are governed by the
linearized Navier–Stokes equations

�tu� + DN · u� = − �p� + Re−1 �2u�, �3a�

� · u� = 0, �3b�

where

FIG. 1. Sketch illustrating the evolution of a perturbation through an ex-
panding pipe. Small inlet perturbations are amplified in the region of the
separated axisymmetric shear layer, but eventually decay downstream.
Hence, even though the flow is linearly stable, it supports very strong tran-
sient growth of perturbations.

θ r

x

LoLi

FIG. 2. Geometry of the expanding pipe. The computational flow domain �
is illustrated with the cylindrical coordinate system and the inlet and outlet
lengths indicated �not to scale�.
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DN · u� � �U · ��u� + �u� · ��U . �4�

The boundary conditions for Eq. �3� will be addressed at the
end of Sec. II C.

The linear evolution of a perturbation from t=0 to a later
time t under Eq. �3� can be expressed eloquently as the ac-
tion of a linear state transition operator A�t� on the initial
perturbation u��0� as

u��t� = A�t�u��0� . �5�

We then perform an analysis, either of stability or of tran-
sient growth, for this linear evolution operator.

For linear stability, we seek normal mode solutions of
the form u��x ,r ,� , t�=exp�� jt�ũ j�x ,r ,��+c.c., where the ũ j

are eigenmodes and the � j are eigenvalues. For any fixed
arbitrary time T �typically T is of order unity under the scal-
ing we have used� the eigenmodes are solutions of

A�T�ũ j = � jũ j , �6�

where the eigenvalues � j and � j are related by � j

=exp�� jT�. The eigenvalues � j of largest modulus are found
iteratively by actions of the operator A�T� as discussed in
Sec. II C. If there exist any solutions of Eq. �6� with
�� j��1, corresponding to � j with positive real part, then the
base flow U is linearly unstable.

The transient growth computations consist of determin-
ing the greatest possible energy growth, G, over all initial
perturbations for a given finite time horizon �. Because the
evolution is linear, it is sufficient to consider initial perturba-
tions with unit norm in the standard L2 inner product �· , ·�
over the flow domain �. Then the energy of such a pertur-
bation after time �, relative to the initial energy, is

E���
E�0�

= 	u����	2 = �u����,u����� ,

where 	u��0�	=1. Using the evolution operator A��� and its
adjoint A���� this can be written as

E���
E�0�

= �A���u��0�,A���u��0��

= �u��0�,A����A���u��0�� .

Let 	 j and v j denote eigenvalues and normalized eigenmodes
of A����A���

A����A���v j = 	 jv j, 	v j	 = 1. �7�

Then the maximum growth obtainable at time �, denoted
G���, is

G��� � max
	u��0�	=1

E���
E�0�

= max
j

	 j . �8�

Thus the maximum growth is obtained by computing the
dominant eigenvalue and corresponding eigenmode of
A����A���. This is again done iteratively through actions of
A����A��� as discussed in Sec. II C.

Finding the dominant eigenvalues of A����A��� is
equivalent to finding the largest singular values of A���. The
eigenmode v j in Eq. �7� provides an initial perturbation u��0�

which generates a growth 	 j over time �. Referring to Fig. 1,
this is drawn as the inlet perturbation, but it may be located
anywhere in the spatial domain �in separated flows, typically
at the separation itself�. Potentially, one is also interested in
the evolution of perturbations from t=0 to some large value
of t, where the perturbation washes out of the system. The
evolved perturbation at time � has a particular meaning how-
ever. Defining u j to be the normalized perturbation at time �
evolved from initial condition u��0�=v j, we have

A���v j = � ju j, 	v j	 = 	u j	 = 1, �9�

where � j = 	u����	=	 j
1/2. This is nothing other than the lead-

ing part for the singular value decomposition of A���, where
the initial perturbations v j and their outcomes under evolu-
tion u j are respectively right and left singular vectors of
A���. We note that the shape of a perturbation at time �, i.e.,
u j, can be computed either as an eigenmode of the trans-
posed operator A���A����, or by evolving the initial pertur-
bation v j an interval � under the action of A �in which case
it is also scaled by � j�—the latter case is simply the evolu-
tion of an initial condition by the linearized Navier–Stokes
Eq. �3�.

When solving the eigenvalue problem, the time horizon,
denoted T in this case, is set by practical considerations; the
eigenvalues 	 j are independent of T. For the transient growth
problem, the eigenvalues of A����A���, singular values of
A���, depend on the time horizon, here denoted �, and this
value is a parameter of study—each new � requires a new
solution to Eq. �7�. As is the case for linear stability, in the
transient growth problem one is primarily interested in the
optimal energy growth given by the dominant eigenvalue of
A����A��� as this describes the “most dangerous” case.
However, as we show in Sec. III C, the first few subdominant
eigenvalues can also be of interest.

The final general point is that the eigenmodes of A���
and A����A��� are trigonometric in the azimuthal direction,
of the form exp�im��+c.c., for integer m. Moreover, eigen-
modes with different azimuthal mode numbers m decouple.
As a result, m effectively becomes a specified input param-
eter to the stability or transient growth problem �see Sec.
II C�. Specifically then, the optimal energy growth is a func-
tion not only of the time horizon � as indicated in Eq. �8� but
also the control parameter Re and the azimuthal mode num-
ber m, i.e., G=G�� ,Re,m�. For clarity, the notation used
later in this paper will be restricted to only those dependen-
cies relevant to the context.

C. Further details

For completeness, we present further details of the nu-
merical computations used in this study. We employ a time-
stepper approach38 in which all problems are solved with the
same code base: a spectral/hp element–Fourier discretization
of the Navier–Stokes equations.39

A representative computational mesh is shown in Fig. 3.
The axial-radial plane, �x ,r�, is discretized using a spectral-
element mesh as in Fig. 3�a�. The same refinement structure
in the vicinity of the expansion is used for all meshes and is
the same as has been used in previous studies of the planar
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backward-facing step.9 The requirements for the inflow and
outflow lengths are set by transient growth computations dis-
cussed shortly. The longer meshes differ from that shown
only by the continuation of regular upstream and/or down-
stream elements. The meshes used to obtain most results in
this study have inflow length Li=5. For numerical values
reported in tables, we have increased the inflow length
to Li=7.5. The difference between computed values for
Li=7.5 and Li=5 is small, as is shown in Table I, and is not
discernible in any of the plots. The outflow length require-
ments depend on � and vary from L0=25 �as in Fig. 3� at
small � up to L0=75 at �=130, the largest considered in this
study. Results have been verified by increasing the outflow
length as illustrated in Table I.

Velocity components and the pressure are expanded in a
tensor product of order-N polynomials within each element.
In the azimuthal direction a Fourier representation with com-
plex modes is used to simulate flows within the full three-
dimensional physical geometry illustrated in Fig. 3�b�. A
Fourier-mode-dependent set of boundary conditions is im-
posed at r=0, the centerline of the pipe, as detailed
elsewhere.39 For linear analyses, azimuthal Fourier modes
can be dealt with independently, whereas in direct nonlinear
simulations of three-dimensional states, Fourier modes must
be dealt with concurrently.

The choice of polynomial order for the spectral-element
expansion is dictated by the need to resolve the separated
shear layer of the base flow. This can be best assessed by
analysis of the reattachment of the separating streamline,
since its location depends sensitively on the resolution of the
separated shear layer, particularly near the separation point.
Table II shows the dependence of the flow reattachment

point xr on polynomial order at Re=1000. A value of N=6 is
sufficient to resolve the flow accurately and this value is used
for all computations in this study.

Nonlinear solutions consist of two types. First, there are
steady, axisymmetric base flows U= �Ux�x ,r� ,Ur�x ,r��.
These are computed by time evolving the two-dimensional
�axisymmetric� Navier–Stokes equations with boundary con-
ditions given by Eq. �2� until a steady state is reached. The
final flow field is then stored for use with the linear stability
analysis and growth computations.

The other types of nonlinear solutions presented are fully
three-dimensional, time-dependent flows resulting from
small disturbances added to the parabolic inflow. Specifi-
cally, the transverse velocity components of the inflow are
perturbed by a small amount of Gaussian white noise. The
boundary conditions, Eq. �2a�, are replaced by

u���i,t� = 2�1 − 4r2�ex + 
rer + 
�e�, �10�

where 
r ,
� are random variables drawn from a Gaussian
distribution with zero mean and standard deviation �. In
most cases we use �=10−2, but also use �=2.5�10−3.

The linear computations �eigenvalues and optimal
growth� are based on the time-stepper approach in which the
actions of the linear operators A and A� are effected by
evolving perturbations in time using a modified version of
the same simulation code. This is coupled with standard lin-
ear algebra algorithms to obtain the desired eigenvalues and
eigenmodes.

Since we work in cylindrical coordinates and the base
flows are axisymmetric, the linearized advection operator in
Eqs. �3� and �4� has the following explicit form:

DN · u� = 
�U · � 0 0

0 U · � 0

0 0 U · �
�


+ 
��xUx �rUx 0

�xUr �rUr 0

0 0 Ur/r
�
�ux�

ur�

u��
� ,

where U ·�=Ux�x+Ur�r. Thus the only nonzero term result-
ing from cylindrical coordinates is Uru�� /r. All other terms
vanish for the base flows we consider or have Cartesian
analogs.

(a)

(b)

FIG. 3. A spectral-element mesh used in this study. For the case illustrated
there are 563 elements, an inflow length of Li=5, and an outflow length of
Lo=25. When required, meshes with more elements and outflow lengths up
to Lo=75 have been used. The two-dimensional mesh �a� used for linear
analysis is extended to three dimensions �b� for nonlinear analysis �DNS�
where Fourier expansions are used in azimuth.

TABLE I. Effect of domain length on representative quantities at
Re=1200. The reattachment point, leading eigenvalue, and optimal growth
for �=130 are given for different inflow Li and outflow Lo lengths. The
polynomial order is N=6.

Li Lo xr /h � G��=130�

5 75 107.11 
0.001 939 1 3.213�106

5 125 107.11 
0.001 939 1 3.214�106

7.5 75 107.11 
0.001 939 1 3.348�106

7.5 125 107.11 
0.001 939 1 3.331�106

TABLE II. Streamwise position of base flow reattachment point �in units of
step height, h� at Re=1000, as a function of spectral-element polynomial
order N. The outflow length is Lo=75=150h.

Order, N xr /h

3 89.3312

4 89.2565

5 89.2655

6 89.2630

7 89.2623

8 89.2620
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Computing the action of A����, necessary for computing
the action of A����A���, requires evolving perturbations by
equations that are adjoint to Eq. �3�. Using integration by
parts these adjoint equations are

− �tu
� + DN� · u� = − �p� + Re−1 �2u�, �11a�

� · u� = 0, �11b�

where u� and p� are the adjoint velocity and pressure fields,
respectively. The adjoint advection terms are

DN� · u� = 
�− U · � 0 0

0 − U · � 0

0 0 − U · �
�

+ ��xUx �xUr 0

�rUx �rUr 0

0 0 Ur/r
�
�ux

�

ur
�

u�
�� .

The change in sign from �U ·��u� to −�U ·��u� follows from
one integration by parts, together with the divergence-free
condition. The second term is equivalent to a standard matrix
transpose. The action of A����A��� on a perturbation is ob-
tained by evolving the perturbation forward � time units un-
der Eq. �3�, followed by evolving the perturbation backward
� time units under Eq. �11�. This is easy to implement when
using the time-stepper approach.38

For axisymmetric base flows, the linear operators A and
A� are homogeneous in the azimuthal direction and different
azimuthal modes decouple. Equations �3� and �11� then have
invariant subspaces of the form

ux��x,r,�,t� = ûx
m�x,r,t�cos�m�� ,

ur��x,r,�,t� = ûr
m�x,r,t�cos�m�� ,

u���x,r,�,t� = û�
m�x,r,t�sin�m�� ,

p��x,r,�,t� = p̂m�x,r,t�cos�m�� ,

or similar with any rotation in �, where m is an integer. The
time stepping code thus evolves the three velocity compo-
nents �ux� ,ur� ,u��� on a strictly two-dimensional �x ,r� spectral-
element mesh. The mode number m is an input parameter.

For computing the eigenvalues of A�T�, the inflow
boundary condition is homogeneous Dirichlet, and all other
boundary conditions are as in Eq. �2�. For computing eigen-
values of A����A��� we use homogeneous Dirichlet bound-
ary conditions on all boundaries both for the operator A���
and A����. As discussed elsewhere,38 for transient growth
problems it is essential that the boundaries be sufficiently far
upstream and downstream that perturbations do not reach

them during the computation of A����A���. As already
noted, this requirement dictates the values of Li and Lo used
in this study.

Eigenvalues are computed using a modified Arnoldi it-
eration method.38,40,41 In brief, repeated application of the
relevant evolution operator, A�T� for stability analysis or
A����A��� for transient growth analysis, to a random starting
vector u0 generates a Krylov sequence and subsequently an
upper Hessenberg matrix, H. After relatively few iterations,
the dominant eigenvalues of H converge to the dominant
eigenvalues of A�T� or A����A���, thus allowing the impor-
tant eigenvalues and eigenvectors to be computed at low
computational cost and memory requirements.

III. RESULTS

A. Base flows

We begin with a brief discussion of the steady, axisym-
metric base flows. Figure 4 shows the streamfunction for a
typical case at Re=600. Streamlines of the high-speed core
flow are drawn as dotted lines, while the separation stream-
line emanating from the expansion edge and the recirculation
streamlines are drawn as solid lines. Contour level intervals
for the streamfunction in the recirculation region and in the
core region are distinctly different in order to better illustrate
flow structure.

The base flows at all other Reynolds numbers in our
study are qualitatively similar, differing primarily in length
of the recirculation region. Figure 5 shows the relationship
between the recirculation length, that is the downstream re-
attachment point denoted xr and Reynolds number for the
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FIG. 4. Contour plot of the base-flow streamfunction at Re=600, showing the separation and reattachment of the flow, and the recirculation region behind the
expansion. Contours are drawn at intervals of 0.125 in the core of the flow and at intervals of 0.02 in the recirculation region.
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FIG. 5. Relationship between downstream reattachment point xr and
Reynolds number for base flows with a fully developed inlet profile up to
Re=1400. Points are the computed value of xr and the solid line shows the
best-fit proportionality given by xr /h=0.0876 Re. The dotted lines indicate
reattachment lengths for the base flows at Re=600 �corresponding to Fig. 4�
and Re=1200.
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base flows up to Re=1400. The recirculation length increases
linearly with Re according to xr /h=0.0876 Re. We believe
this to be the most accurate study yet reported of recircula-
tion length for the 1–2 expanding pipe. The constant of pro-
portionality we obtain is slightly lower than that of Latornell
and Pollard4 and Iribarne et al.,31 who report a linear rela-
tionship with a proportionality of 0.096 for a fully developed
inlet profile. However, our value matches the more recent
experimental observations of Hammad et al.3 who reported a
value of 0.088.

B. Linear stability

We report in Table III the leading eigenvalues �those
with largest real part� obtained from a linear stability analy-
sis up to Re=1400. At least for Re from 600 to 1400, the
leading eigenvalues, all correspond to azimuthal modes with
m=1 and only these eigenvalues are reported. The eigenval-
ues reported in Table III agree with those of Cliffe et al.42 to
within 0.3%. In all cases the leading eigenvalues are real and
negative, and hence as stated at the outset, the axisymmetric
base flow is linearly stable at least up to Re=1400. Since no
eigenvalue crosses zero, there is no bifurcation from the axi-
symmetric base flow up to Re=1400 despite the experimen-
tal observations by Mullin et al.5 We return to this point in
the discussion.

C. Transient energy growth

Having established that the flow is linearly stable up to
at least Re=1400, we turn to the determination of the most
dangerous, that is energetic, transient dynamics. Recall that
such a study involves not only the Reynolds number but also
the time horizon � and the azimuthal mode number m. We
begin by presenting results as a function of � and m for a
fixed value of Re and subsequently we consider the depen-
dence on Re.

1. Dependence on azimuthal mode number

Figure 6 shows optimal growth envelopes G��� for per-
turbations in the axisymmetric �m=0� and first six nonaxi-
symmetric modes �m=1–6� over a range of time horizons at
a fixed Reynolds number of Re=600. In general, the greatest
increase in energy is seen in the first azimuthal mode, m=1,
which at this Reynolds number peaks at ��50, just at the
right edge of the figure and decreases for larger �. The higher
mode numbers exhibit less growth and peak at considerably
smaller values of �. For example, the m=2 growth envelope
peaks at ��19.5, where the optimal growth there is an order

of magnitude less than for the m=1 mode at the same value
of � and 1.5 orders of magnitude less than for the m=1 mode
where it obtains its maximum.

There is generally a monotonic decrease in growth with
increase in mode number, with two exceptions. The first is
that the m=0, axisymmetric, mode growth envelope is quali-
tatively different from the others and in particular the growth
peaks at a much earlier time horizon and has a much smaller
value in comparison with any of the low-order, nonaxisym-
metric modes. The other exception to the dominance of
m=1 is at small time horizons. Below ��3 the m=2 mode
exhibits larger optimal growth than the m=1 mode, and be-
low ��2 the m=3 mode exhibits larger optimal growth than
the m=2 mode. This can be clearly seen in Fig. 6�b�. We
have not attempted to resolve the details and mode ordering
at yet smaller values of �. This modal behavior, where the
m=1 mode dominates except for short time horizons, has
also been reported for flows in parallel43,44 and constricted9

pipes.
The dominance of the energy growth for the m=1 mode

is observed at all other Reynolds numbers in our study.
Hence, for the remainder of the paper we shall mainly focus
on the m=1 case. Some results will also be presented for the
m=0 case since it is qualitatively different from the
others and because it represents the strictly two-dimensional
problem.

2. Reynolds number and time horizon

The dependence of the optimal growth on Reynolds
number and time horizon is well summarized by contour
plots of G�� ,Re�. Figures 7�a� and 7�b� show such contour
plots for m=1 and m=0 modes, respectively. Only contours

TABLE III. Leading eigenvalues from a linear stability analysis of flows in
the 1–2 axisymmetric expansion for Reynolds numbers indicated. All values
correspond to azimuthal mode number m=1. All are real and negative
and hence the axisymmetric base flow is linearly stable up to at least
Re=1400.

Re 600 1000 1200 1400

� 
0.006 238 8 
0.002 682 7 
0.001 939 1 
0.001 457 1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

lo
g

G
(τ

)

τ

m=0

m=1

m=2

m=3

m=4
m=5m=6

(a)

0

0.5

1

1.5

2

0 1 2 3 4

lo
g

G
(τ

)

τ

m=0

m=1

m=6

(b)

FIG. 6. �a� Energy growth envelopes at Re=600 for azimuthal mode num-
bers �as indicated� up to m=6. �b� Enlargement of �a� for small �. Curves for
m=1 through m=6 are in decreasing monotonic order on the right-hand
side.
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with G�1 are plotted and the no-growth contours, corre-
sponding to G=1, are emphasized by the thicker black
curves. To the right of the no-growth contours G is less than
unity, meaning that the energy of any perturbation will be
less than its initial energy at these values of �.

The intersection of the no-growth contour with the Rey-
nolds number axis is a saddle-point of the growth function in
the �-Re plane and indicates a critical Reynolds number, Rec,
above which energy growth is possible. This critical value
depends on mode number m and so we define Rem

c as the
value of Re for which

� �G��,Rem
c �

��
�

�=0
= 0.

For Re�Rem
c , the growth envelope G��� for mode number m

has positive slope at �=0 and so G����1 for at least some
values of �. The smallest critical value occurs for m=1 with
Re1

c =26. Values of Rem
c for other m are also quite low and

given in the second column of Table IV.
As the Reynolds number increases perturbations with

m=1 azimuthal structure can be amplified by large factors.
Specifically, one can see in Fig. 7�a� that at Re=1200, per-
turbations are amplified by factors of over 106. Thus, even
though the flow is linearly stable at Re=1200, it is capable of
amplifying small perturbations to appreciable levels through
strictly linear growth. In contrast to the m=1 modes, axisym-
metric modes of Fig. 7�b� experience very limited growth
and are confined to much shorter time horizons for all Re
studied.

3. Time evolution of optimal perturbations

We now consider the time evolution of some optimal
perturbations at Re=1200. Figure 8 shows the optimal
growth envelope for Re=1200 and m=1, along with the tran-
sient energy evolution under the linearized Navier–Stokes
equations from three different initial conditions. The initial
perturbations are the computed optimal perturbations for
three different values of � as indicated. The case �=110 is
very nearly the initial condition giving the maximal energy
growth at Re=1200. As is necessarily the case, each of these
transient evolution curves touches the optimal growth enve-
lope at its corresponding � value, but otherwise they lie en-
tirely below the envelope.

Figure 9 depicts the perturbation field evolving from the
optimal initial condition for �=110 �Re=1200 and m=1�.
This evolution corresponds to the transient energy trajectory
drawn with a solid line in Fig. 8. Owing to the small mag-
nitude of the initial perturbation relative to its evolved state,
we visualize the perturbation at early times differently from
later times. Initially the perturbation is shown via a contour
plot of the azimuthal velocity component u� in a planar cut
through the geometry. Subsequent fields are visualized in
terms of three-dimensional isosurfaces of azimuthal velocity.
The evolving perturbation is plotted on a relatively small
section of the computational domain every four time units
until time 28. The perturbation is also plotted when it attains
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FIG. 7. Contours of optimal transient energy growth as a function of time
horizon � and Reynolds number for �a� azimuthal mode number m=1 and
�b� azimuthal mode number m=0.

TABLE IV. Table of critical Reynolds numbers Rem
c , maximum growth val-

ues Gm
max, and corresponding time horizons for maximum growth, �m

max �for
Re=600 and Re=1200 as indicated� for each of the first four azimuthal
modes, m.

m Rem
c Gm

max�600� �m
max�600� Gm

max�1200� �m
max�1200�

0 64 9.20�100 4.4 2.32�101 6.2

1 26 6.23�103 50.1 3.77�106 106

2 38 1.95�102 19.5 7.59�102 34.1

3 54 8.05�101 14.6 3.17�102 28.3
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FIG. 8. Energy growth under linear evolution at Re=1200, m=1 for three
different initial conditions corresponding to optimal perturbations at �=30,
70, and 110. Circles denote the optimal growth envelope. Each linear evo-
lution curve touches the envelope at its respective � value, as indicated by a
filled circle.
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its maximum energy, at t=110. At this time the perturbation
is well downstream of the expansion: the centroid of the
perturbation energy lies at xc=47.1.

Unsurprisingly, the optimal initial perturbation is con-
centrated near the flow separation at the expansion. From
there it is subsequently advected by the base flow into the
separated shear layer. In passing over the shear layer, chev-
ron structures emerge in a packet, initially of very limited
streamwise extent. After an initial rapid growth phase, the
structure stabilizes as it approaches the time of peak growth
after which the vortices at the rear of the structure begin to
decay. The antisymmetric appearance of the perturbation is a
direct consequence of the m=1 azimuthal structure. Note
that there is a characteristic axial wavelength of the distur-
bance that is approximately preserved through the transient
evolution.

Transient behavior of the optimal perturbation in m=0 at
Re=1200 is illustrated through isosurfaces of radial velocity
in Fig. 10. The initial disturbance is again concentrated
around the step edge. Shortly afterwards it evolves into a set

of toroidal rolls of alternating sign, which advect down-
stream, first growing in energy up to t�6, then decaying.
Again note that the axial wavelength of the disturbance is
preserved through this transient behavior.

The physical nature of the perturbed shear layer for
Re=1200, m=1 is illustrated in Fig. 11. The optimal pertur-
bation at time of maximum energy growth is linearly com-
bined with the base flow at a relative energy level of 5%.
This combined state is visualized via an isosurface of azi-
muthal vorticity. The image suggests that the optimal pertur-
bation manifests as a sinuous oscillation of the shear layer, as
was also observed in the optimal growth analysis of flow in
a stenotic pipe.9 Note that the azimuthal orientation is arbi-
trary, due to rotational symmetry of the flow, and has been
chosen here so as to emphasize the structure of the surface.

4. Growth maxima

At a given Reynolds number and for a specified azi-
muthal mode number m, the maximum of G over all time
horizons � is an important quantity. We thus define the maxi-
mum growth and the corresponding time horizon as

Gm
max�Re� = max

�
G��,Re,m� ,

�m
max�Re� = arg max

�
G��,Re,m� .

Table IV includes the maximum growth and corresponding
time horizons at representative Reynolds numbers of 600 and
1200.

The growth maxima are plotted in Fig. 12 as a function
of Re for several values of m. Each curve emerges at the
corresponding critical value Rem

c . The figure highlights
the significantly different magnitude of growth obtainable
for m=1 perturbations compared to perturbations in
other azimuthal mode numbers, particularly axisymmetric
perturbations.

Beyond approximately Re=300, log G1
max�Re� is seen to

be linear with Re indicating an exponential dependence of
maximal growth on Reynolds number. This may also ulti-
mately be true of the other broken symmetry perturbations at
Reynolds numbers higher than those studied here. Similar
exponential growth with Reynolds number has been ob-
served for two other separated flows: flow over a backward-
facing step23 and steady flow in a stenotic pipe.9 This
exponential dependence is significantly different from the
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FIG. 9. �Color online� Evolution of optimal initial disturbance in the m=1
mode visualized through contours/isosurfaces of azimuthal velocity at
Re=1200 from t=0 �bottom� in time intervals of four units in the spatial
range of −2.5�x�15. The panel labeled t=110 shows the evolved distur-
bance at its maximum growth: here the spatial range is 36.5�x�54 and the
isosurface levels are two orders of magnitude larger than in the other panels.
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FIG. 10. �Color online� Evolution of optimal initial disturbance in the
m=0 mode visualized through isosurfaces of radial velocity at Re=1200
from t=0 �bottom� in time intervals of two units in the spatial range of
x� �−2.5,15�.

FIG. 11. Physical interpretation of the maximal disturbance at Re=1200.
Shown is a linear superposition of the base flow with the optimal m=1
disturbance at the time of maximum growth, t=110. The disturbance has a
relative energy magnitude of 5% compared with the base flow. The visual-
ization is a semitransparent isosurface of azimuthal vorticity at a level high-
lighting the separated shear layer.

034101-8 Cantwell, Barkley, and Blackburn Phys. Fluids 22, 034101 �2010�



classic parallel flows, planar Couette flow45 and straight pipe
flow,43–45 for which the maximum transient growth increases
only with the square of Reynolds number.46 We return to this
point in Sec. IV.

The form of evolved optimal perturbations at the time of
maximal growth �m

max are expected to provide a good indica-
tion of what might be observed in a flow subject to small
perturbations. See for example the perturbation at t=110 in
Fig. 9 and the combined state shown in Fig. 11. We shall
address this in Sec. III D, where we consider nonlinear simu-
lations. Here we list in Table V some pertinent characteristics
of the optimal perturbation fields at the point of maximum
growth for the case of m=1. For each Re, �m

max is given,
along with the centroid location �xc ,rc� of the energy of the
evolved perturbation, as well as the local axial wavelength 	x

and temporal frequency St of the perturbation. The radial
location rc is calculated from the Fourier mode in the meridi-
onal semiplane and represents the radial location where the
disturbance is largest. If the energy centroid were calculated
over the full pipe it would necessarily lie on the pipe axis by
symmetry.

Figure 13 shows xc, the axial location of the perturbation
energy centroid at maximal growth, together with the reat-
tachment point of the base flow previously plotted in Fig. 5.
One sees clearly that for Re�500, the optimal disturbance at
its peak energy growth lies consistently about five diameters
�ten step heights� upstream of the reattachment point of the

base flow. This provides strong evidence that the separated
shear layer is driving the growth of perturbations.

5. Suboptimal growth

The optimal perturbations considered thus far are those
which provide the maximum transient energy growth under
linear evolution. However suboptimal perturbations can at-
tain comparable energy, with the first subdominant perturba-
tions in particular demonstrating growth on the same order of
magnitude as the optimal perturbations. We have calculated
suboptimal perturbations and corresponding energy growth
factors by computing the subdominant eigenvalues and
eigenmode of A����A��� in Eq. �7� by the Arnoldi method as
described in Sec. II C.

In Fig. 14, we show growth envelopes for the optimal
and first three suboptimal perturbations at Re=600. A few
additional suboptimal growth factors are plotted at �=50. It
is apparent that the growth envelopes are grouped in pairs.
The first subdominant curve is very similar to the optimal
envelope—it attains its growth maximum at nearly the same
value of � and with 80% the energy amplification of the
optimal. Each of the second pair of suboptimal growth enve-
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TABLE V. Characteristics of the optimal perturbations at the time of maxi-
mum growth �max for m=1 modes at Reynolds numbers indicated. Along
with �max the centroid location �xc ,rc�, of the evolved perturbation energy, as
well as the local axial wavelength 	x and temporal frequency St of the
perturbation.

Re �max xc rc 	x St

600 50.1 21.3 0.40 3.79 0.175

800 69.0 29.9 0.40 3.62 0.165

1000 87.6 38.5 0.40 3.62 0.155

1200 106 47.1 0.40 3.68 0.158
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FIG. 13. Location of the centroid of the disturbance at its maximum growth
�points connect by solid lines�, compared to the location of the reattachment
point �dashed line�. The disturbance reaches its maximum approximately
five diameters upstream of reattachment point.

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120

G
(τ

)

τ

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100 120

G
(τ

)

τ

FIG. 14. Leading four growth envelopes for the optimal and suboptimal
perturbations for the m=1 mode at Re=600. The circles on the dotted line at
�=50 show the first eight leading eigenvalues at the point of the peak opti-
mal growth.

034101-9 Transient growth analysis of flow through an expanding pipe Phys. Fluids 22, 034101 �2010�



lopes peaks at an earlier time horizon than for the first pair
suggesting the eigenmodes undergo slightly different dynam-
ics. These modes obtain about 30% of the optimal energy
growth. The first eight leading eigenmodes at �=50 indicate
further pairing of modes. We have not resolved details of
suboptimal dynamics further into the spectrum.

The perturbation fields themselves provide valuable in-
sight into the pairing of growth envelopes. The azimuthal
velocity of the four leading modes at �=50 are visualized in
Fig. 15. These fields have been obtained by evolving each
�sub�optimal initial condition, each with the same energy
norm, to time t=50. Referring to Eq. �9�, these are the first
four left singular vectors of A�50� multiplied by the corre-
sponding singular value. The isosurface levels are the same
for all four modes.

The pairing of the eigenvalues is immediately apparent:
the corresponding optimal modes come in pairs that are pri-
marily related by a phase shift of � /2 relative to one another.
This has been previously observed and discussed in the con-
text of the planar backward-facing step.23 For a truly stream-
wise invariant flow, such as for a straight pipe, the optimal
modes necessarily come in pairs exactly related by a � /2
phase shift since the modes are trigonometric in the stream-
wise direction �sine and cosine pairs�. Essentially, the expan-
sion can be viewed as a breaking of streamwise translation
symmetry of the flow. The breaking is very significant for the
base flow since it gives rise to the separated shear layer
which dominates the flow in the expanding pipe. However,
the optimal perturbations see a flow with only a relatively
weak broken streamwise symmetry and hence come in pairs
with only slightly different dynamics and growth rates.

D. Response to noise

To demonstrate the relevance of the linear growth com-
putations to a real flow in the presence of small inlet noise,
we have performed a limited number of full, three-
dimensional direct numerical simulations with weak noise
imposed on the inflow as described in Sec. II C. For each
simulation, the initial state is the steady laminar flow at the
given Reynolds number. Starting at time zero, noisy inflow
boundary conditions are imposed.

In the first instance, we analyze the dynamics of the flow
in terms of the modal energies over the full domain defined
by

Em�t� =
1

2
�

�

	ûm�t�	2d� , �12�

where ûm is the mth component of the azimuthal Fourier
transformed velocity field. Figure 16 shows the evolution of
modal energies at three values of Re. The axisymmetric com-
ponent of the energy, E0, is larger than all others and is off
the scale of the figure. It starts at, and remains essentially
unchanged from, the energy of the steady base flow.

In all cases, the energy of the m=1 mode grows within a
short time as the effect of the noisy inflow condition propa-
gates through the domain. For Re=600, the m=1 modal en-
ergy saturates above the noise floor of all other modes. It is
nevertheless quite small. At Re=900, the m=1 modal energy
saturates at 500 times the level of the noise floor. The m=2
modal energy is just barely distinguishable above the higher
modes. At Re=1200, the first three modes are clearly visible
with the m=1 modal energy more than four orders of
magnitude above the noise floor and approximately one or-
der of magnitude above the m=2 mode. Some long period
�T�200� dynamics may be present in the noise-driven flow
at Re=1200, but we have not investigated these as they are
outside the focus of our study.

The modal energies shown in Fig. 16 clearly confirm the
dominant response of the m=1 mode as determined by the
optimal growth analysis. Moreover, for the Reynolds num-
bers examined, the saturation value of the m=1 energy E1 is
consistent with exponential dependence on Re with half an
order of magnitude for each Re increase in 100. This com-
pares very favorably with the dependence of G1

max on Re in
Fig. 12.

(a)

(b)

(c)

(d)

FIG. 15. �Color online� Isosurfaces of azimuthal velocity for the four lead-
ing perturbations at Re=600, m=1 evolved to time t=50. �a� and �b� are the
optimal and first suboptimal modes. �c� and �d� are the next pair of subop-
timal modes �see Fig. 14�.
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FIG. 16. Modal energy in a noisy inflow DNS of the expanding-pipe flow at
�a� Re=600, �b� Re=900, and �c� Re=1200. Modal energies visible above
the noise floor of 10−9 are labeled. Initially the flow is the steady axisym-
metric base flow. The axisymmetric energy E0 is off the scale of the figure.

034101-10 Cantwell, Barkley, and Blackburn Phys. Fluids 22, 034101 �2010�



Having established that a weakly noisy inflow does in
fact preferentially excite the m=1 mode, we proceed to ex-
amine the nature of the resulting flow. Figure 17 shows the
optimal linear mode at Re=900 �Fig. 17�a�� and Re=1200
�Fig. 17�b��, together with instantaneous snapshots of the
noise-driven flow at the corresponding Reynolds numbers.
Specifically, the top half of each subfigure shows the optimal
perturbation, corresponding to m=1, at the optimal time
�max. Energy of the perturbation field is visualized. The bot-
tom half of each subfigure shows the three-dimensional flow
at a representative time instant. The time is arbitrary except
that it is chosen so that the phase of the nonlinear flow aligns
with the phase of the optimal mode. For the nonlinear flow
the axisymmetric modal energy �which dominates the flow�
is removed and the energy in the remaining three-
dimensional field is visualized in a semimeridional plane
�lower half of the pipe�. Figure 18 further highlights the
structure of nonlinear flow seen in Fig. 17�b� with contour
plots of the three velocity components.

The most striking feature of the noise-driven nonlinear
flow is that it exhibits precisely the same chevron structures
as predicted by the transient growth analysis. The wave-
lengths of the fully nonlinear flow and the optimal perturba-
tion are almost exactly the same. Moreover, while the struc-
tures in the noise-driven flow occupy a greater streamwise
extent than the optimal perturbation, the location of the
maximum in the nonlinear flow is well aligned with the lo-
cation of the optimal. As the Reynolds number increases and
the location of the optimum moves downstream, so does the
location of the nonlinear maximum. There is one final inter-
esting feature of the nonlinear state. Owing to the rotational
symmetry of the geometry, the m=1 structures may have any
orientation in �. Thus in the noise-driven flow, the orienta-
tion of the chevron structures is not fixed but can, and does,
vary in both space �seen in Fig. 18� and time.

The noise-driven nonlinear flow is time varying and de-
pends on the noise level imposed at the inflow. We address
these aspects briefly in Fig. 19. In Figs. 19�a�–19�c�, we
capture the instantaneous state of the nonlinear flow at
Re=900 at three times separated by 50 time units. The first

plot, Fig. 19�a�, is at the same time instant as Fig. 17�a�. In
this figure, we plot kinetic energy as a function of x sampled
along two rays down the length of the pipe. Both rays are at
r=0.8. One �solid� is at �=0 and the other �dashed� is at
�=� /2. Since the flow at Re=900 is dominated by m=1, it
is sufficient to use only these two rays to sample the azi-
muthal structure of the flow. These kinetic energy profiles
give a good representation of the instantaneous flow struc-
tures. Occasionally the nonlinear flow is relatively quiescent
�as in Fig. 19�b�� and when structures are visible, their
strength and location within the pipe vary to some extent, as
can be seen in comparing Fig. 19�a� with Fig. 19�c�.

For the same inlet noise, the structures occupy a much
larger streamwise extent at Re=1200, Fig. 19�d�, and they
tend to be located further downstream. By reducing the noise
level of the input at Re=1200, the nonlinear state becomes
more purely m=1 and the nonlinear structures tend to be
more localized as shown in Fig. 19�e�.

A profile comparison of the standard deviation of veloc-
ity components from the linear analysis and the noisy simu-
lation is given in Fig. 20. The profiles for the noise-driven
flow were obtained through temporal-azimuthal averaging of
the flow and extracted through a radial line at x=100.0,
while the linear profiles were attained through a streamwise
averaging of the disturbance profile at its maximal evolution.
The streamwise and radial profiles correlate to a high degree.
The broader shape of the azimuthal profile from the noise-
driven flow is probably due to the contribution of other
modes in the system.

Finally, we have extracted statistical properties of the
flows with stochastic inflow forcing, as shown in Table VI.
The centroidal location of the response �xc ,rc� is computed
as the centroid of the distribution of turbulent kinetic energy,
conditional on the fluctuations lying downstream of the ex-
pansion, and based on a two-dimensional azimuthal average.
The wavelength 	 is taken as the average value in a window
centered on the axial centroidal location, while the Strouhal
frequency St is the center frequency of time series extracted
at x=50. We note the generally good agreement of all these
values with their linear counterparts presented in Table V.

(a)

(b)

FIG. 17. �Color online� Visualization of noise-driven flow and optimal perturbation at �a� Re=900 and �b� Re=1200 in the range of 10�x�65. The upper
half of each pipe shows the m=1 optimal perturbation at the respective Reynolds number, evolved to the point of maximum growth. The lower half shows a
snapshot of the noise-driven flow for comparison.

FIG. 18. �Color online� Isosurfaces of streamwise �top�, radial �middle� and azimuthal �bottom� velocity components for the noise-driven flow showing the
downstream disturbance induced by the stochastic forcing at the same time instant as Fig. 17�b�.
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The statistical results, in combination with the visual
comparison in Fig. 17, provide compelling evidence for the
similarity to the linear analysis of the structures generated in
the noise-perturbed flow.

IV. SUMMARY AND DISCUSSION

We have presented a numerical study of dynamics in an
axisymmetric expanding pipe. We have investigated the lin-
ear stability of the steady axisymmetric flow and shown that
the flow remains linearly stable up to at least Re=1400. We
find that nevertheless at linear order perturbations are very
strongly amplified in the region of the separated shear layer
that extends downstream of the expansion. For example, at
Re=1200 the energy of perturbations can be amplified by a
factor of over 106. The initial disturbances giving maximal
transient growth are localized in the vicinity of the pipe ex-
pansion and have azimuthal mode number m=1. Under lin-
ear evolution, these disturbances quickly evolve into packets
of waves characterized by a chevron structure corresponding

to a sinuous oscillation of the shear layer. These disturbances
gain energy through an inflectional instability mechanism as
they pass along the shear layer, reaching energetic maxima
just upstream of the reattachment point of the flow. Thereaf-
ter, disturbances advect downstream where they ultimately
decay in the stable downstream pipe. Through direct numeri-
cal simulations we have established that the linear results do
capture, quantitatively, most features seen in a fully three-
dimensional nonlinear flow subjected to small Gaussian inlet
noise. Thus we have not only quantified in detail the tran-
sient response of this flow but we have also demonstrated the
importance of this type of linear analysis to flows that would
commonly be described as convectively unstable, and thus
noise amplifiers.

The expanding-pipe flow shares many properties with
other documented geometries, although there are also some
important differences. The most similar example to the
present one is found in a recent study of transient growth of
disturbances to steady and pulsatile flows in a pipe with a
smooth axisymmetric constriction.9 Such flows have been
the subject of extensive research7,11–15 owing to the impor-
tance of the associated flows through arterial stenoses. The
two other closely related flows are the planar backward-
facing step20,23 and the curved channel flow.36

Probably the most significant similarity among the three
separated flows we have studied to date �backward-facing
step, stenosis, 1–2 expansion� is the dependence of maximal
transient energy growth on Reynolds number. In all cases,
beyond some value of Re, the maximal growth Gmax depends
exponentially on Re. This exponential dependence is in stark
contrast to parallel shear flows, such as straight pipes and
channels, in which the maximum growth typically scales
only as the square of Reynolds number.43–46 This highlights
the very important difference between the transient growth
studied here and that discussed extensively in parallel shear
flows.47 Here the transient growth is closely linked to the
variation in the flow in the streamwise direction, as illus-
trated in Fig. 1. Physically, perturbations grow rapidly in the
region of the shear layer driven by the inflectional velocity
profile, but this growth is only transient because perturba-
tions advect past the reattachment point and thereafter decay.
Chomaz refers to convective non-normality35 to distinguish
these cases from the lift-up non-normality driving transient
growth in parallel shear flows. See also Marquet et al.48

The exponents for different separated flows can be com-
pared. In Fig. 12, Gmax for the m=1 azimuthal mode in-
creases at a rate of 0.45 orders of magnitude for each in-
crease in 100 in Re. For convenience in this discussion we
denote this rate as �=0.45 /100. In the study of stenotic

TABLE VI. Statistics for DNS with stochastic inflow forcing at
Re=600,900,1200. Here we define the centroid �xc ,rc� based on the distri-
bution of turbulent kinetic energy in the outflow section of the pipe.

Re xc rc 	 St

600 17.97 0.466 3.76 0.210

900 31.93 0.400 3.38 0.175

1200 49.66 0.402 3.65 0.160
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FIG. 19. Energy of noise-driven flow through the line r=0.8 for the �=0
�solid lines� and �=� /2 �dotted lines�. ��a�–�c�� Re=900, �d� Re=1200, and
�e� Re=1200 at 1/4 the noise level of �d�. Vertical lines indicate xc, the
centroid of the optimal linear perturbation at the corresponding value of Re.
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FIG. 20. Radial profiles of velocity component standard deviations compar-
ing the noise-driven simulation �left� with the linear analysis �right�. The
three velocity components each normalized to their peak value are shown:
streamwise �solid line�, radial velocity �dashed line�, and azimuthal velocity
�dotted line�.
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flow9 the rate is not explicitly reported but is obtainable from
the available data. The rate is �=1.23 /100. However, for the
stenotic flow Re is based on the flow upstream of the steno-
sis. For comparison to the present work, the stenotic flow Re
should be corrected upwards by a factor of two to account
for the local Re at the stenosis. This gives a rate of increase
in Gmax, again for the m=1 azimuthal mode, of �
=0.61 /100, quite close to that of the sudden axisymmetric
expansion. In the study of the planar backward-facing step23

the rate is stated explicitly giving �=1.18 /100. This is the
growth rate for strictly two-dimensional modes, but for the
planar case three-dimensional effects are not very important.
The Re for the backward-facing step is based on the center-
line velocity and the channel height upstream of the step.
Correcting this downwards by a factor of 2/3 to convert to
bulk velocity, Gmax for the backward-facing step increases at
a rate of �=1.77 /100. This is faster than for the axisymmet-
ric flows, but it is not altogether different. See Fig. 21 for a
visual comparison of the dependence of maximum growth on
Reynolds number for these three separated flows and also
with the dependence for Hagen–Poiseuille flow,44,47 where
maximum growths occur for axially invariant disturbances
with azimuthal wavenumber m=1 and scale asymptotically
with Re2.

Another point of comparison between the different sepa-
rated flows is the downstream location of the optimal pertur-
bation when it reaches its maximum growth. In the present
study, we find this location to be consistently five inlet diam-
eters upstream of the reattachment point. This is consistent
with the picture of a shear layer driven instability. For steady
stenotic flow, only one case has been reported in the
literature.9 In that case it was noted that the optimal pertur-
bation, at its maximum, is located in the vicinity of the
downstream of the reattachment point. Also, in the curved
channel the perturbation is located in the vicinity of the re-
attachment point at its growth maximum.36 Interestingly,
however, this is quite different from the case of the planar
backward-facing step in which the optimal perturbation is
well downstream of all separation and reattachment points
when it reaches its maximum growth.23

One can also consider the form of the optimal perturba-

tions in different cases. Again, not surprisingly, the optimal
modes found in the sudden expansion studied here are very
similar to the optimal modes in the steady stenotic flow. In
both cases, the optimal perturbations have m=1 azimuthal
structure and visually are nearly the same. �Compare Fig. 10
with Fig. 5 of Blackburn et al.9� On a more quantitative level
one can compare the wavelengths in the two cases. From
Table V, at Re=800, the wavelength of the optimal distur-
bance at its maximal location is 	=4.2. For the stenotic flow
�in terms of equivalent Reynolds numbers and length scales�
the wavelength is 	=3.7. Taking into account the variation in
wavelengths with Re and the fact that the conversion from
the stenotic Reynolds number to the present one is not exact,
these values are quite close. In any case, these wavelengths
are significantly longer than those observed in the planar
backward-facing step23 and curved channel flow,36 in which
the optimal modes have a roll structure whose wavelength is
typically twice the outflow channel height.

One can likewise consider the Strouhal frequencies ob-
served in various cases. Instead of attempting a detailed com-
parison, we take a slightly different approach following
closely the discussion by Marquet et al.36 Noting that the
perturbations are essentially packets of traveling waves, one
can invoke the kinematic relationship c=	St, equivalently
St=c /	, between the speed of a packet c, the wavelength,
and the frequency. In the present study, the bulk velocity in
the downstream pipe is 1/4 due to the 1–4 increase in cross-
sectional area. Perturbations traveling at the bulk speed with
typical wavelength, 	=3.6 say at Re=1000, would be ex-
pected to have frequency St=c /	=0.25 /3.6=0.07. With an
upper bound set by the bulk velocity in the upstream pipe,
we have 0.07�St�0.3, which encompasses the observed
frequencies. Marquet et al.36 argue a similar result holds for
the planar backward-facing step and the curved channel. In
all cases the Strouhal frequencies are of comparable magni-
tude St�10−1; differences between the velocity scales in the
different configurations hinders a more precise comparison.

Given that the dominant mechanism driving the growth
of perturbations is surely inflectional instability of the shear
layer, one could attempt to determine the frequency of grow-
ing perturbations from a local analysis of the numerically
computed shear layer. This has been attempted for the
backward-facing step and is further discussed by Marquet
et al.36 Basically the difficulty is that, even ignoring that the
flow is not parallel, the frequency determined from a local
analysis depends on the station at which the analysis is done
and only the order of magnitude of the frequency is reliably
determined. In reality the flow is far from parallel in the
vicinity of the separation point and likewise the dynamics of
perturbations is initially quite complex. See for example
Fig. 9 at time t=4.

We conclude with a brief discussion of related experi-
ments. We begin with the base flow results. Our measure-
ments of recirculation length give a linear dependence on Re
according to xr /h=0.0876 Re. This can be considered to be
a perfect match to the proportionality 0.088 reported in ex-
periments by Hammad et al.3 Earlier works, summarized by
Latornell and Pollard,4 also give a linear dependence on Re
but with a proportionality of about 0.096 for a fully devel-

FIG. 21. Dependence of maximum transient energy growth on bulk Rey-
nolds numbers for three separated flows: two-dimensional disturbances in a
backward-facing step flow �Ref. 23�; steady stenotic flow �Ref. 9�; and the
present 1–2 axisymmetric expansion, compared with Hagen–Poiseuille flow
�Refs. 44 and 47�.
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oped inlet profile. Latornell and Pollard compare their results
with Macagno and Hung,25 who report a proportionality of
0.09 and readily acknowledge that this discrepancy could be
explained by a small variance of their expansion ratio from
1–2 and by the fact that the reattachment length is very sen-
sitive to the shape of the inlet velocity profile. Either of these
effects could account for the small difference between the
Latornell and Pollard value and that obtained in the present
study.

The connection between our computations and experi-
ments with regards to symmetry breaking and shear-layer
oscillations is less satisfying at present. We first address the
symmetry breaking. Measurements by Mullin et al.18 indi-
cate the presence of a steady-state symmetry breaking bifur-
cation at Re�1100. On the contrary, our linear stability cal-
culations show conclusively that the perfectly symmetric
geometry does not exhibit any bifurcation, at least for
Re�1400. Moreover, the noise-driven DNS at Re=1200
gives no indication of the existence of a nonlinear state with
broken symmetry, although we cannot rule out the existence
of such a state. These circumstances are quite different from
those for the planar expansion. In that case, computations
reveal a steady-state symmetry-breaking bifurcation near
where asymmetric flows are observed experimentally. More-
over, in the case of the planar expansion, weak symmetry
breaking was explored computationally.18 It was shown that
solution branches in nominally symmetric experiments could
be better captured in calculations with weakly broken sym-
metry than by calculations of a perfectly symmetric system.
This suggests that the effect of weak symmetry breaking for
the expanding pipe might be explored in the future. For now
we can only state that there is nothing in our calculations
which gives insight as to why a symmetry breaking would be
robustly observed in experiments at Re�1100 and we view
these experimental findings as unexplained at present.

With regard to shear-layer oscillations, there are several
mentions of such oscillations in the experimental literature
on the 1–2 expanding pipe. Quantitative details, however, are
largely lacking. Typically oscillations are associated with the
breakdown of the linear scaling of the recirculation length
with Reynolds number1,31,32 and there is no agreed value of
the Reynolds number at which this occurs.4 We believe that
this is due to the fact that there is no linear instability to
define such a threshold for oscillation and the onset of oscil-
lations detectable in experiment will depend on factors such
as the level of noise in the experiment. Oscillations observed
in some experiments, for example by Sreenivasan and
Strykowski24 and Mullin et al.,5 are clearly of a very differ-
ent character than the waves examined here. The oscillations
found in these experiments have a much lower frequency, by
more than an order of magnitude, than ours and are observed
at Re above 1500.

There are two possible points of contact between calcu-
lations presented here and published experiments. The first is
the work of Latornell and Pollard4 on the expanding pipe.
They report small sinusoidal waves appearing in the shear
layer. At Re=750, these are observed to start at approxi-
mately 20 inlet diameters downstream of the expansion,
which is consistent with our optimal growth results from

Table V. The other is the work of Griffith et al.15 on flow in
a smooth stenotic geometry. They report shear-layer oscilla-
tions and in fact associate these with convective instability.
Moreover, for a blockage of 0.75 �corresponding to a 1–2
expansion following the stenosis�, they measure nondimen-
sional oscillation periods �inverse Strouhal numbers� in the
approximate range of 0.2–0.3 for Reynolds numbers in the
range of 400–800 from data obtained shortly downstream of
the stenosis. Converting to the expanding-pipe scaling, this
gives Strouhal frequencies in the range of 0.6–0.4 for Re
between 800 and 1600. These are larger �i.e., represent fluc-
tuations with a smaller timescale� than our observations from
DNS and linear analysis, by factors in the range of 2.5–4.
Their data �Fig. 14 and associated text� do however suggest
an increase in fluctuation timescales further downstream of
the stenosis.

We hope that the detailed results presented here may
serve to motivate more extensive quantitative experimental
investigations of these transient dynamics.
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