
Computational study of subcritical response in flow past a circular cylinder

C. D. Cantwell* and D. Barkley†

Mathematics Institute and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
�Received 19 May 2010; published 25 August 2010�

Flow past a circular cylinder is investigated in the subcritical regime, below the onset of Bénard-von Kármán
vortex shedding at Reynolds number Rec�47. The transient response of infinitesimal perturbations is com-
puted. The domain requirements for obtaining converged results is discussed at length. It is shown that energy
amplification occurs as low as Re=2.2. Throughout much of the subcritical regime the maximum energy
amplification increases approximately exponentially in the square of Re reaching 6800 at Rec. The spatiotem-
poral structure of the optimal transient dynamics is shown to be transitory Bénard-von Kármán vortex streets.
At Re�42 the long-time structure switches from exponentially increasing downstream to exponentially de-
caying downstream. Three-dimensional computations show that two-dimensional structures dominate the en-
ergy growth except at short times.
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I. INTRODUCTION

Incompressible fluid flow past a circular cylinder has been
extensively studied, both for its relevance to numerous engi-
neering applications and as a prototype bluff-body flow
exhibiting vortex shedding. See for example �1,2� and refer-
ences therein. It is one of the most-used test beds for explor-
ing stability concepts in open flows, e.g. �3–13�. As a result,
a great deal is known about this flow in general and in par-
ticular concerning the primary instability. It is well-
established that this instability occurs at a critical Reynolds
number of about 47 �3–5�. Below this value the steady wake
flow is linearly stable, while above it the steady flow is un-
stable and periodic oscillations arise leading to the famous
Bénard-von Kármán vortex street �14,15�. Our concern here
is what happens in the stable, subcritical regime prior to, and
leading up to, the onset of oscillations.

Stable flows may exhibit transient growth �16,17�. This
means that infinitesimal perturbations to the flow may grow
in energy for some time before subsequently decaying to
zero. While initially popular in parallel shear flows as possi-
bly playing a role in the transition to turbulence, e.g.
�18–20�, transient growth has become increasingly of interest
in spatially developing flows, e.g. �11,21–25�. For instance,
separated flows arising due to abrupt changes in geometry
are known to promote extremely large transient growth in
perturbations �23,26,27�. The origin of this growth can be
traced to the non-normality of the linear stability operator
associated with many shear flows �11,16�. This means, in
particular, that in spatially developing flows the eigenmodes
of the stability operator tend to be located downstream while
the eigenmodes of the adjoint operator tend to be located
upstream �11,13,17�.

For the cylinder wake, Giannetti and Luchini �13� first
examined in detail the adjoint eigenmodes in the vicinity of
the primary instability and used these, together with direct
eigenmodes, to understand the sensitivity of the flow. Their

results are further discussed in detail by Chomaz in the con-
text of non-normality �11�. Since this important work, there
have been further computations of direct and adjoint modes
and transient growth for the cylinder wake. For example
Marquet et al. �28� have computed direct and adjoint eigen-
modes of the supercritical flow, and Abdessemed et al. �29�
have studied the transient growth, focusing on supercritical
Reynolds numbers, although also reporting some subcritical
values.

There have been a number of experimental studies of the
cylinder wake in the stable and marginally unstable regime
�3,30,31�. The most relevant are the studies by Le Gal and
Croquette �30� and the recent work by Marais et al. �31� on
the impulse response at subcritical Reynolds numbers. By
inducing an impulse through a small displacement or rotation
of the cylinder, wave packets are generated that grow and are
subsequently advected downstream. While the measurements
by Le Gal and Croquette provide informative qualitative
properties of the transient dynamics, these measurements
were made using streaklines and so provide limited quanti-
tative detail. The more recent work by Marais et al. uses
particle image velocimetry to obtain quantitative measure-
ments of the transient response in the subcritical regime.

The purpose of the current study is twofold. Primarily we
establish an accurate characterization of the optimal transient
energy growth throughout the subcritical regime for the cyl-
inder wake. We determine the threshold Reynolds number
where energy growth first occurs, determine the Reynolds
number dependence of the optimal growth, and its value at
criticality. We show that the transient dynamics associated
with optimal energy growth is in the form of wave packets
similar to those observed in experiments on subcritical
wakes. The secondary purpose of the paper is to highlight
and establish the computational requirements for such com-
putations. As we shall show, the requirements for accurate
computations of transient growth are more severe than those
of linear stability. While these findings are specific to the
cylinder wake, they should guide computations of similar
flows.
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II. FORMULATION

The flow geometry is illustrated in Fig. 1. A circular cyl-
inder of diameter D is placed in a free-stream flow U�ex.
Streamwise x and cross-stream y coordinates are centered on
the circular cross section. The cylinder axis, infinite in length
and normal to the free-stream velocity, aligns with the z co-
ordinate.

In principle this open flow would have infinite extent in
all directions. In practice, however, our numerical calcula-
tions necessarily employ a computational domain � with
finite inflow Li, outflow Lo, and cross-stream Lc lengths, as
illustrated. The z direction is homogeneous, and for the is-
sues addressed in this paper, this direction can be treated
without needing to restrict to a bounded domain. The de-
mands on the domain dimensions is an important aspect of
our work discussed in detail in Sec. III.

The fluid is governed by the incompressible Navier-
Stokes equations

�tu + �u · ��u = − �p + Re−1 �2u , �1a�

� · u = 0, �1b�

where u=u�x�= �u�x ,y ,z� ,v�x ,y ,z� ,w�x ,y ,z�� is the fluid
velocity and p�x ,y ,z� is the static pressure. Without loss of
generality we set the density to unity. The equations are non-
dimensionalized by the free-stream speed U� and the cylin-
der diameter D. The Reynolds number Re is, therefore, given
as

Re =
U�D

�
,

where � is the kinematic viscosity of the fluid.
No-slip boundary conditions are imposed on the cylinder

surface. The boundary conditions around the outer bound-
aries of the domain are such as to give a good numerical
approximation of the unbounded flow. Specifically, the
boundary conditions are:

u���i,t� = U�ex, �2a�

u���c,t� = U�ex, �2b�

u���w,t� = 0 , �2c�

�xu���o,t� = 0, p���o,t� = 0, �2d�

where ��i is the inlet boundary at x=−Li, ��c is the cross-
stream boundary at y= �Lc, ��w is the boundary of the cyl-
inder, and ��o is the outlet boundary at x=Lo.

The remaining material in this section is included for
completeness and to clearly define notation. Since the details
are contained in numerous prior publications, especially
�32,33�, the treatment here is minimal.

Equation �1� is solved using direct numerical simulation
�DNS� employing a split-step pressure-correction scheme de-
scribed elsewhere �34,35�. This is implemented in a spectral-
element code �36� utilizing an elemental decomposition of
the domain in the two-dimensional �2D� plane normal to the
cylinder axis.

The base flows U considered in this paper are steady,
two-dimensional solutions to Eq. �1�. Hence U
= �U�x ,y� ,V�x ,y��. These Reynolds number dependent flows
are symmetric about the streamwise centerline as depicted in
Fig. 1. Figure 2 shows a typical base flow. Those at other Re
are qualitatively similar, differing primarily in the length of
the recirculation region behind the cylinder. For Re�6.2,
there is no recirculation region. Steady base flows in both
subcritical and supercritical regimes are rapidly obtained
through DNS by imposing this midplane symmetry. Once
computed, base flows are stored for use in subsequent linear
calculations.

Our interest is in the dynamics of infinitesimal perturba-
tions u� to the steady base flow. These perturbations evolve
according to the linearized Navier-Stokes equations

�tu� + �u� · ��U + �U · ��u� = − �p� + Re−1 �2u�, �3a�

� · u� = 0, �3b�

where p� is the perturbation pressure. Numerically, Eq. �3� is
solved using the same techniques as the nonlinear Navier-
Stokes equations. For the most part we will focus on 2D
perturbation fields u�= �u� ,v�� on 2D grids. However, we
will also consider briefly three-dimensional perturbations.
Since the base flow is 2D, three-dimensional �3D� perturba-
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FIG. 1. Diagram of the cylinder geometry �not to scale�, show-
ing the inflow, outflow and cross-stream dimensions referenced
later. Also marked are the separation streamlines and the down-
stream stagnation point, xs.
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FIG. 2. Representative base flow. Streamlines of the flow at
Re=40. The computational domain is much larger than the region
shown. The main flow field uses a contour spacing of 0.25, while a
smaller spacing of 0.01 is used to highlight the structure of the
recirculation bubble.
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tions can be decomposed into noninteracting modes of the
form

u��x,y,z� = û�x,y�ei�z + c.c., �4�

where � is the spanwise wave number of the perturbation.
Only û�x ,y�, a three-component field on a two-dimensional
grid, needs to be computed.

Our primary focus is on the transient dynamics of pertur-
bations at subcritical Reynolds numbers. We focus on the
energy of perturbation fields and seek initial conditions u��0�
which generate the largest possible growth in energy under
evolution by Eq. �3�. The formalism is as follows. Let A���
denote the linear evolution operator over a time � defined by
Eq. �3�, so that

u���� = A���u��0� .

Since the governing equations are linear it is sufficient to
consider initial perturbation fields with �u��0��2

= �u��0� ,u��0��=1, where �· , ·� denotes the L2 inner product.
Then the energy growth in the perturbation field over a time
� is given by

E���
E�0�

= �u����,u����� .

In terms of the operator A���, and its adjoint A���� in the L2
inner-product, we have

E���
E�0�

= �A���u��0�,A���u��0�� = �u��0�,A����A���u��0�� .

Letting � j and v j denote eigenvalues and normalized
eigenfunctions of the operator A����A���, we have

A����A���v j = � jv j, �v j� = 1. �5�

The eigenvalues are non-negative and we assume ordering
�1	�2	¯.

The maximum possible energy growth, denoted G���,
over a specified time horizon �, is then given by the domi-
nant eigenvalue of A����A���, i.e.,

G��� = max
j

� j = �1.

The initial perturbation leading to this growth is the corre-
sponding eigenfunction v1. While the dominant eigenvalue
of A����A��� is generally of most importance, the first few
subdominant eigenvalues may also be of interest. In particu-
lar v2 will also be considered in this study.

The maximum energy growth over all time horizons is
denoted by

Gmax = G��max� , �6�

where

�max = arg max
�

G��� . �7�

While our primary focus is transient growth, we report
some eigenvalue results. Equation �3� can formally be writ-
ten

�tu� = Lu�.

Looking for normal-mode solutions to these equations gives
the eigenvalue problem

Lũ j = 
 jũ j, �ũ j� = 1, �8�

where ũ j are normalized eigenmodes and 
 j eigenvalues of
L. We assume ordering such that Re�
1�	Re�
2�	¯. Sta-
bility of the base flow is determined from the right-most
eigenvalues of L in the complex plane.

Associated to Eq. �8� is the adjoint eigenvalue problem

L�u j
� = 
 j

�u j
�, �9�

where u j
� are the adjoint modes, �eigenmodes of the adjoint

operator L��, and 
 j
� is the complex conjugate of 
 j. The

norm of the adjoint eigenmodes is chosen so that �u j
� , ũ j�

=1 for all j. Then the eigenmode and adjoint modes satisfy
biorthonormality:

�ui
�,ũ j� = �ij .

In practice the eigenvalues for the transient growth or
stability problems are computed through a modified Arnoldi
algorithm using a time-stepper approach �32,33�.

III. INFLUENCE OF DOMAIN SIZE

As noted in the introduction, the size of the computational
domain can be an important factor in studies of the transient
response in subcritical cylinder flow. While the requirements
for accurate base flows and eigenvalue calculations for the
cylinder wake have been discussed in many places �37–40�,
and are presented in our study in the Appendix, there is no
such discussion for transient growth calculations for the cyl-
inder wake. Hence some details are worthwhile. We first
present results from the convergence study and then discuss
some of the causes and implications of our findings.

A. Convergence

We focus on the role of inflow length, Li, and the cross-
stream half-length, Lc, since these are the critical lengths.
The requirements on the outflow length, Lo, are set by the
largest � value under consideration in the transient growth
analysis and could in principle be arbitrarily large. Based on
the maximum value of �=110 we consider, and a free-stream
U�=1, we fix the outflow length in the convergence study at
Lo=125.

Figure 3 shows a representative spectral-element domain
of the type used in our computations. �It is in fact the final
mesh used for obtaining results presented in Sec. IV.� For the
study of domain size, Li and Lc are varied by adding or
removing elements as necessary, and the polynomial order of
the spectral expansion within each element is fixed at order
8. The polynomial order used in obtaining the final transient
growth results is 6, as established in the Appendix.

The dependence of these calculations on domain size is
assessed through the calculation of energy growth at a fixed
time horizon of �=20. At this time horizon non-negligible
growth is expected across most of the range of Reynolds
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numbers under consideration. Figure 4 summarizes the errors
introduced through domain size restriction. Three Reynolds
numbers, Re=5, Re=20, and Re=46, are considered to en-
sure that the mesh is capable of resolving all solutions in the
subcritical range.

The transient growth results are seen to be sensitive to
domain size, much more so than either the base flow or ei-
genvalue calculations presented in the Appendix. Domains
that provide results accurate to within 1% for base flows and
eigenvalues, e.g., a domain with Li=Lc=25, do not provide
such accuracy for transient growth calculations. The effect of
cross-stream restriction at low Re is particularly significant.
Even accepting that in many cases one does not need high
accuracy in transient growth values, Fig. 4 demonstrates the
care that must be taken in computing transient response in
the subcritical regime.

Based on these results, a computational domain with Li
=45 and Lc=45 is deemed sufficient to resolve transient
growth calculations to within about 1% for subcritical Rey-
nolds numbers. Possibly the accuracy is not quite 1% at Re
�5, but the growth values are sufficient for our purposes. A
diagram of the resulting mesh is shown in Fig. 3.

B. Discussion

We begin by recalling that recently, Abdessemed et al.
�29� reported transient growth calculations in the cylinder
wake, including some within the subcritical regime at Re
=45. In comparing those results with ours, we have found
that their growth values are about 32% larger than those
computed on the mesh in Fig. 3, at the same Re and time
horizon. We will use this discrepancy to focus the present
discussion.

The Abdessemed et al. calculations were performed using
a spectral-element code similar to that used in this study.
Their computational domain has bounds −8x95 and
−12.5y12.5 and identical boundary conditions to ours.
One can quickly rule out the possibility that resolution �poly-
nomial order� or outflow length are significant factors in the
disagreement between the two computations. Moreover, we
have already seen that the transient growth calculations re-
quire large inflow Li and cross-stream Lc dimensions so the
disagreement is not surprising in retrospect. However, there
are in fact two causes for the discrepancy which we address:
one is the indirect effect caused by differences in the base
flows for the different computations and the other is the di-
rect effect of domain requirements for the optimal initial
condition itself.

We shall refer to our computational domain with dimen-
sions as in Fig. 3 as �L, �large domain�, and that with di-
mensions used by Abdessemed et al. as �S, �small domain�.
Let UL denote the base flow computed on �L �at Re=45� and
let uL� denote the normalized initial condition, �uL��=1, giving
optimal growth at �=100. Similarly let US and uS� denote the
base flow and normalized optimal initial condition on �S.
The resulting energy growth for the two calculations is given
in the first two rows of Table I, where one sees the large
discrepancy. It is worth pointing out that the critical Rey-
nolds numbers obtained on the two meshes differ by only
about 2%.

To assess the role of the base flow, one can take the initial
condition uS� from the smaller domain and evolve it on the
larger domain with the corresponding base flow UL. The re-
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FIG. 3. Representative spectral-elemental mesh. Dimensions are
Li=45, Lc=45, and Lo=125 �refer to Fig. 1 for definitions�.
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FIG. 4. Convergence of optimal growth calculation with mesh
geometry by �a� in-flow length Li and �b� cross-stream length Lc.
Points indicate the computed values. Optimal growth is for a time
horizon of �=20. Percentage errors are shown relative to the calcu-
lation using Li=65 and Lc=65, respectively.

TABLE I. Effects of domain size, base flow, and initial condi-
tion �IC� on the energy growth at Re=45. Energy at time 100 is
given for different configurations �see text�.

Domain Base Flow IC E�100�

�L UL uL� 2.54�103

�S US uS� 3.36�103

�L UL uS� 1.85�103

�S UL uS� 1.77�103
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sulting growth after 100 time units is given in the third row
of Table I. Necessarily the growth had to be less than for uL�
because uL� , by definition, gives the largest possible growth
over this time horizon on �L. It is perhaps somewhat sur-
prising, however, that the growth following from the fixed
initial condition uS� is approximately factor of 2 less on the
large domain than on the small domain �second and third
rows of Table I�. The difference is almost entirely attribut-
able to the difference in the base flows UL and US. This is
confirmed by evolving uS� on the small domain but with the
base flow UL, truncated onto the smaller domain. The result
is given in the last row of Table I. There is little difference
between the evolution of uS� on the two domains, if they both
have the same base flow UL. The conclusion is that the en-
ergy growth may depend considerably on the base flow �a
factor of 2 in this case�, even in situations where other mea-
sures, such as critical Reynolds numbers, would not reveal
such a large dependency.

There is then the remaining issue of how uL� and uS� differ
and why the energy growth following from uS� is 27% less
than from uL� for the same base flow �first and third rows in
Table I�. This has to do with the domain requirements, in
particular the inflow length Li needed to capture the optimal
initial condition. In Fig. 5 we show the upstream extent of uL�
on two scales. The energy of the perturbation upstream of
x=−5 is of the order 10−5 and, while one might consider it to
be negligible, this portion of the initial condition makes a
significant contribution to the overall growth and cannot be
neglected in the transient growth computations if quantitative
accuracy is required.

We conclude with a few further remarks on the presence
of weak upstream tails in the optimal initial conditions. First,
despite our caution about the need to resolve these to obtain
quantitatively accurate results, we find the linear evolution
from the optimal initial condition is qualitatively similar
whether or not the numerical domain fully contains the weak
upstream tail of the initial condition. We observe no impor-
tant qualitative errors in discounting it, but quantitatively the
errors in the energy growth can be large. In addition, the
length of the upstream tail depends on the time horizon �.
The value �=100 considered in our comparison is rather
large. For smaller time horizons the weak tail may be absent

from the optimal initial condition simply because such a tail
could not advect downstream and come into play over a
small time horizon. Specifically, in Sec. IV B we focus on
optimal initial conditions computed for �=20 and in this case
the upstream tails are negligible.

IV. TRANSIENT SUBCRITICAL RESPONSE

A. Two-dimensional energy growth

Figures 6 and 7 summarize the optimal energy growth for
2D perturbations in the subcritical regime. Figure 6 shows
the optimal growth envelopes for particular values of Re. To
be clear, these curves show the largest attainable energy
growth over all possible initial conditions at each value of �.
The uppermost curve is the growth at Re=50, above the
onset of linear instability at Rec. After an initial rapid growth,
the energy increase saturates to an exponential rate, in line
with that of the leading eigenvalue.

Figure 7 shows growth contours in the �Re, �� plane. The
contours highlight the fast energy growth at small time hori-
zons and the slow decay for long �. The thick curve denotes

(a)

(b)

y

y

x

FIG. 5. �Color online� Energy of the optimal initial condition for
Re=45, �=100 shown on two scales: �a� matching that of the fig-
ures shown later in the paper and, �b� showing an extended scale
which highlights the upstream tail of the perturbation.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100 110

lo
g
1
0
G
(
τ)

τ

Gc
max

FIG. 6. Optimal energy growth at Reynolds numbers from Re
=5 to Re=50 in increments of Re=5. Points indicate the computed
values. The case Re=50 is above Rec and is shown as dashed. The
horizontal line is an estimate of the maximum growth in the sub-
critical regime �see text�.

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

R
e

τ

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

R
e

τ

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

R
e

τ

10
0

10
1

10
2

10
3

FIG. 7. Contour plot of optimal energy growth in the subcritical
regime, with contour levels as indicated. The thick black curve
denotes the contour of no-growth, G=1.

COMPUTATIONAL STUDY OF SUBCRITICAL RESPONSE… PHYSICAL REVIEW E 82, 026315 �2010�

026315-5



the no-growth contour: G=1. The interception of this curve
with the Re-axis indicates a critical Reynolds number for
energy growth �41�, ReE, below which the energy of all per-
turbations decays monotonically in time and above which
there is transient energy growth for at least some perturba-
tions. We estimate ReE=2.2. Thus, a small amount of tran-
sient energy growth is possible before the formation of the
recirculation region behind the cylinder at Re=6.2.

The single most important measure of the transient energy
growth at any Re is the maximum Gmax over all �. �Recall
Eqs. �6� and �7��. This is shown in Fig. 8 where log10 Gmax

is plotted as a function of Re2. Throughout most of the sub-
critical regime, the maximum growth increases exponentially
with Re2. More specifically, we find

log10 Gmax � 1.55 � 10−3 Re2. �10�

Only for Re�40 does the growth deviate significantly from
this form. There is an upturn in the maximum growth in
approaching Rec. Above Rec, Gmax=� since the flow is lin-
early unstable and G��� diverges as �→�.

Data up to Re=46 have been obtained via the transient
growth calculations described in Sec. II. The maximum
growth at Rec is obtained differently. At criticality, the opti-
mal initial condition is the adjoint eigenmode corresponding
to the critical eigenvalue. Under linear evolution, this initial
condition evolves to the direct eigenmode. Hence the optimal
growth at criticality is obtained from the eigenmode and its
adjoint. Taking �ũ�=1 and �u� , ũ�=1, i.e., biorthonormalized
modes, then the maximum growth is given by �u��. Based on
these calculations our estimate of the maximum growth at
Rec, and hence the maximum growth within the subcritical
regime, is Gc

max	Gmax�Rec�
6800.

B. Spatiotemporal evolution

We now turn to one of our primary focuses, the transient
evolution of infinitesimal perturbations. For the most part we
shall be interested in the qualitative character of this evolu-
tion and how it depends on Re.

We start the perturbation field u� from initial conditions
calculated for optimal linear energy growth and evolve the
field via the linearized Navier-Stokes equations, Eq. �3�. Re-
call from Sec. II that the initial condition giving optimal
growth over time horizon � is the dominant eigenfunction v1
of A����A���. Hence, the initial condition and subsequent
evolution u��t�, depend on time horizon � in defining
A����A���. However, the transient dynamics based on a sub-
stantial range of � values are qualitatively very similar. This
is illustrated, in part, by Fig. 9 where we show the optimal
growth envelope �denoted by circles� at Re=40 and also the
energy evolution from optimal initial conditions correspond-
ing to three quite different values of �. While there are quan-
titative differences between the transient-response curves,
qualitatively they are similar, suggesting similar flow fea-
tures and dynamics are excited by initial conditions opti-
mized across a large range of � values. This holds for other
values of Re, with the peak in the response curves shifting to
smaller times for smaller values of Re. In the spatiotemporal
results which follow, we have opted to fix the � at which the
optimal perturbations are computed, rather than having it
vary with Re. All optimal perturbations are for �=20, as this
provides a good choice over the whole of the subcritical
regime.

Visualizations of the linear time evolution of perturba-
tions u��t�, at Re=20 and Re=40 are shown in Figs. 10 and
11. Perturbation energy, �u��2 /2 is plotted in Fig. 10 with a
fixed energy scale throughout the figure. Figure 11 shows the
same evolution, except in terms of vorticity. Here we visual-
ize not the vorticity in the perturbation field itself, but in a
superposition of the base flow and the perturbation, i.e., u
=U+�u�, where � is chosen so that the resulting superposi-
tion best resembles what one might find in an actual flow, as
for example, might be observed in experiments. In all cases
only a portion of the full computational domain is shown.

The bottom-most plots correspond to the optimal initial
conditions u��t=0�=v1. One can see in the energy plot that
the initial condition is more localized to the cylinder at
higher Re. In fact the initial condition becomes quite broad
spatially at low Re. In the vorticity plot one can see the
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asymmetry of the combined flow introduced by the perturba-
tion. The base flow U is symmetric about the centerline,
while the perturbation u��0� is antisymmetric. Note, for the
Re and � values considered here, there is no weak upstream
tail in the initial conditions of the type shown in Fig. 5�b�,
although weak upstream tails are found at Re=40 for larger
values of �. These tails play no qualitative role in the spa-
tiotemporal dynamics.

The perturbation fields are evolved via the linearized
Navier-Stokes equations, Eq. �3�, and visualized every 10
time units. The first obvious point is that in both cases the
perturbation fields, or more accurately the superposition of
the perturbation fields and base flow, resemble transitory
Bénard-von Kármán vortex streets. At Re=20, the initial per-
turbation develops into a packet of roughly two wavelengths
in streamwise extent and advects steadily downstream at a
speed slightly less than 1. The peak energy is reached at t
�27 and thereafter the energy decays quite gradually. At
Re=40, the leading edge of the packet, and the streamwise
location of the maximum of the response, advects down-

stream at approximately the same speed as at Re=20. In this
case however, the evolving perturbation develops a long
trailing series of sinuous oscillations as the excited near-
wake region undergoes slowly decaying oscillations. The
streamwise wavelength of oscillations is smaller at Re=40
than at Re=20. The peak energy at Re=40 is not reached
until t�60, after the last plot shown. It is evident that the
growth in the integrated energy of the perturbation field is
due both to an increase in the maximum pointwise energy
and also to a significant increase in the spatial extent of the
perturbation field. This second factor becomes increasingly
important as Re approaches Rec.

To further highlight the spatiotemporal character of the
evolving perturbations, and their dependence on Re, we
show in Fig. 12 space-time diagrams covering a large range
of both space and time. Within each tile, space is horizontal
from x=0 to x=125 and time is vertical from t=0 to t
=125. Hence unit speed, that of the free-stream velocity, cor-
responds to 45° in these plots. Each row in this figure corre-
sponds to a particular Re, from Re=20 to Re=50. The left

FIG. 10. �Color online� Contours of energy showing the linear evolution of perturbations at Re=20 �left� and Re=40 �right�. The panels
are snapshots at 10 time-unit intervals from t=0 �bottom� to t=50 �top�.
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column shows the evolution of energy in the perturba-
tion sampled on the flow centerline, that is, contours of
u��x ,y=0, t�, where u��t=0�=v1 is the optimal initial condi-
tion. For example, Fig. 12�a� shows the same perturbation as
in Fig. 10�a�. The contour scale varies from row to row and
is set so that the maximum energy corresponds to white and
zero energy corresponds to black.

The center and right columns of Fig. 12 are explained as
follows. The center column is the evolution of the first sub-
dominant optimal mode, that is the evolution of u��t�, where
u��t=0�=v2. The subdominant mode and subsequent evolu-
tion are very similar to that of the dominant mode. However,
careful inspection shows that the sub-dominant mode is spa-
tially phase shifted by a quarter wavelength with respect to
the dominant mode. This is seen as a half wavelength shift in
Fig. 12 since a pair of vortices �one wavelength� generates
two peaks in the centerline energy. The pairing of perturba-
tions has been observed and discussed elsewhere �23,27� as a
manifestation of streamwise symmetry breaking such that

modes come in near pairs with similar, but not identical,
dynamics. The importance of this second, phase-shifted
mode is that from the pair of modes we can easily construct
an approximate energy envelope eliminating the fast oscilla-
tions associated with vortex shedding. This is shown in the
third column where we plot E=E1+�E2, where E1 and E2
are the energy of the dominant �left column� and subdomi-
nant �middle column� perturbation fields. We choose � so
that the peak energy of the subdominant mode matches that
of the dominant mode. As one can see this nearly eliminates
the fast oscillations throughout the space-time plot of E.

The dynamics seen at Re=20, Re=30, and Re=40 are
quite similar. There is an increase in energy �both peak en-
ergy and spatial extent� followed by a decrease with the
long-term dynamics being a weak wave packet propagating
and decaying downstream. The effects of varying Re in the
regime are those already noted: there is a decrease in wave-
length and an increase in near-wake oscillations with increas-
ing Re.

FIG. 11. �Color online� Same evolution as in Fig. 10, Re=20 �left� and Re=40 �right�, but viewed in terms of vorticity. The vorticity of
a linear superposition of the base flow and the perturbation is shown at snapshots separated by 10 time units from t=0 �bottom� up to
t=50 �top�. The maximum vorticity is 1.5.
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The behavior at Re=45 is, however, qualitatively different
from that seen at Re=40 and below, even though Re=45 is
still in the subcritical regime. The perturbation at long times
does not have a maximum at some downstream location set
by how long the perturbation has evolved. Instead the maxi-
mum is located at a finite streamwise location. This is due to
the fact that at long times the perturbation must evolve to the
least stable wake eigenmode and there is a qualitative change
in the spatial structure of this eigenmode at Re�42 �also
noted by Giannetti and Luchini �13� who give Re�43�. Be-

low Re=42 the leading eigenmode is exponentially growing
downstream and hence appears localized to the downstream
computational boundary. Above Re=42 the leading eigen-
mode has a maximum at finite streamwise position with ex-
ponential decay far downstream. The location of the maxi-
mum decreases as a function of Re and is at about x=34.6
for Re=45. This phenomenon is well-known and understood
in other systems, e.g. �42–44�. In these systems, the switch
from downstream growth to downstream decay of an eigen-
function occurs when the corresponding eigenvalue crosses
the essential spectrum. The essential spectrum, in turn, is the
continuous eigenvalue spectrum associated with the far-field
part of the system. It might be of some interest in the future
to investigate these issues for the cylinder wake.

For completeness we also show the evolution at Re=50,
slightly into unstable regime. Although somewhat masked by
the fact that the perturbation is growing in time, the spatial
structure of the mode at long time is not very different from
that at Re=45. The perturbation has a maximum at about x
=19.4 followed by exponential downstream decay, matching
that of the leading eigenmode from the stability analysis at
Re=50.

C. Three-dimensional energy growth

We consider here briefly the energy growth of 3D pertur-
bations, mainly to show that 3D effects are unimportant. The
spanwise wave number � of perturbations, Eq. �4�, becomes
an additional parameter to vary. We shall fix the Reynolds
number at Re=40. Optimal growth curves over a range of
spanwise wave numbers, at representative values of �, are
plotted in Fig. 13 and growth contours in the �−� plane are
shown in Fig. 14. The thicker line in Fig. 14 denotes the
no-growth contour and energy growth occurs only to the left
of this contour. Except for small values of �, the growth of
2D perturbations ��=0� greatly dominates the growth of 3D
perturbations.

For short time horizons, �we estimate ��8.0�, the largest
possible growth is found at nonzero wave numbers and the
range of active wave numbers increases considerably as �
approaches zero. This shift to high-wave-number modes at

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

FIG. 12. �Color online� Plots showing the space-time evolution
of energy in the perturbation u�. Each tile covers x between 0 and
125 �horizontal� and t between 0 and 125 �vertical�, and shows the
energy of perturbations sampled on the centerline y=0. Each row
corresponds to a different Reynolds number, specifically: Re=20
�a,b,c�, Re=30 �d,e,f�, Re=40 �g,h,i�, Re=45 �j,k,l�, and Re=50
�m,n,o�. For each Reynolds number we show the evolution of the
dominant mode �left column�, the first sub-dominant mode �center
column�, and a combination �right column� revealing the envelope
of the perturbation as explained in the text. The scale of each row of
tiles is normalized by the maximum energy in the right column over
the space-time domain, with white corresponding to the highest
energy and black to zero energy.
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short time horizons occurs in other shear flows �26,27,45�,
but we are unaware of any explanation for this phenomenon.
This does not seem important in any practical sense because
the overall response of such modes is very small indeed. We
have not investigated other values of Re in detail, but the
unsurprising result is that 2D modes dominate the transient
response in the subcritical wake.

V. SUMMARY AND DISCUSSION

We have studied the subcritical response of the cylinder
wake by accurately computing the optimal energy growth
throughout the subcritical regime. We have treated at some
length the numerical domain requirements for accurate com-
putations within the subcritical region. The results them-
selves show that energy growth first occurs as low as Re
�2.2, below the onset of separation at Re�6.2. Over most
of the subcritical regime the maximum energy amplification
increases approximately exponentially in the square of Re.
This superexponential dependence on Re is even faster than
the exponential dependence commonly observed in other
separated flows �23,26,27�. However, the maximum growth
in the cylinder wake never reaches the extremely large val-
ues since the wake becomes linearly unstable at a relatively
low Re where the maximum energy growth is about 6800.

We have considered the structure of the optimal transient
dynamics. The evolving perturbations are of the form of tran-
sitory Bénard-von Kármán vortex streets. At lower Re wave
packets of only a few wavelengths are formed which propa-
gate downstream. As Re increases the packets extend in
length due to the slow decay of oscillations in the near wake.
At Re�42 the spatial structure of the response at long times
switches from exponentially increasing downstream to expo-
nentially decaying downstream so that at about Re=42 the
response at long times has a maximum at a finite streamwise
location. Finally, at Re=Rec�46.6 the wake becomes lin-
early unstable.

It is of interest to relate our results to the understanding of
subcritical dynamics arrived at by local stability analysis,
e.g., �6,9,11,46–49� and references therein. In brief, from
sectional stability analysis of wake profiles, the picture of the
subcritical region is as follows. Below Re�5 the wake is

everywhere stable. Above Re�5 there is a region of convec-
tive instability behind the cylinder and at Re�25 a pocket of
absolute instability appears within the region of convective
instability. The size of the absolute pocket grows with Re
and is thought to be responsible for the actual instability
occurring at Rec, although prediction of the transition point
has eluded local analysis.

In reality, there are two qualitative changes within the
subcritical regime: the onset of transient growth at Re=2.2
and the switch from downstream growth to downstream de-
cay of transient structures at Re�42, associated with a cor-
responding change in the structure of eigenmodes. It seems
that the first of these, the onset of transient energy growth,
could be connected with the first appearance of a local con-
vective instability. A local pocket of convective instability
would indeed correspond to transient response in a global
setting. Moreover, the Re values for the two event are rea-
sonably close. This would appear to corroborate the picture
first proposed by Cossu and Chomaz �21� in the context of
the Ginzburg-Landau equation. In this picture, one can un-
derstand the transient energy growth as arising from pertur-
bations traveling through a local region of instability, where
they are amplified, followed by advection into the stable
downstream wake, where they decay. We caution, however,
that the cylinder wake is highly nonparallel in the near wake
region and it would probably be a mistake to connect the
transient response and the parallel-flow analysis in too much
detail.

There is nothing in the actual transient response corre-
sponding to the local opening of the absolute pocket at Re
�25, but neither is there expected to be �49�. We have
clearly shown an uneventful evolution of the transient re-
sponse between Re=20 and Re=30, and in fact up to Re
=40. We are unaware of any local analysis of the cylinder
wake that predicts the shift from growth to decay of modes at
Re�42, and this might be interesting to investigate in the
future.

There is another way to view the relationship between our
study and concepts of convective and absolute instability.
This is also closely related to some past and ongoing experi-
mental studies �30,31�. While convective and absolute insta-
bility are strictly defined for streamwise homogeneous flows,
which the cylinder wake is not, the change in the linear re-
sponse at Rec has the essential character of the transition
from convective to absolute instability and it commonly re-
ferred to using these terms. One sees this in our Fig. 12
where the subcritical cases, Figs. 12�c�, 12�f�, 12�i�, and 12�l�
have the character of convective instability: initial perturba-
tions lead to wave packets that advect downstream such that
even though a perturbation grows �for some time� it is simul-
taneously advected quickly downstream. The supercritical
case Fig. 12�o� has the character of absolute instability where
perturbations grow at fixed streamwise locations. LeGal and
Croquette present nice streakline visualizations of the tran-
sient wake, qualitatively similar to what is shown in our Fig.
11, and discuss this as evidence of convective instability in
the cylinder wake prior to the onset of sustained oscillations.
Marias et al. use particle image velocimetry �PIV� to obtain
more quantitative measures of the subcritical response gen-
erated by rotary motion of the cylinder. In particular they
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measure front velocities and study how these behave as Rec
is approached. Marias et al. also extract integrated energy
from PIV data. Transient amplification is indeed observed,
followed by exponential decay. However, due to the fact that
experimental perturbations are introduced by cylinder rota-
tion, and not from the optimal initial conditions studied here,
quantitative comparisons are not presently possible, but may
be pursued in the future.

Finally, we conclude with the issue of numerical accuracy.
Our study has highlighted the importance of ensuring the
numerical convergence of the computational domain. Tran-
sient growth problems in open flows with inflow-outflow
boundary conditions are particularly susceptible to deficien-
cies in the extent of the computational domain. This is true
not only in the downstream region, but in the cross-stream
and especially the inflow dimensions. It is well known that
for external flows enforcing boundary conditions too close to
a body can lead to deformation of the underlying basic flow
�37–40�. Accurate resolution of perturbation fields for tran-
sient growth problems can impose yet more severe require-
ments. The cylinder wake is a prime example of a flow in
which the requisite domain can be far greater for transient
growth computations than for other types of calculations.
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APPENDIX

In this appendix we present convergence results for base-
flow calculations, stability calculations, and polynomial or-
der. Base flow convergence is assessed through two indica-

tors: the position, xs, of the stagnation point marking the end
of the recirculation region and velocity profiles just down-
stream of the cylinder. Figure 15 summarizes the conver-
gence of the stagnation point with mesh dimension. The stag-
nation point is not present at Re=5, and consequently this
case does not appear. Percentage errors are relative to the
calculation using Li=65 and Lc=65, respectively. The stag-
nation point is seen to be highly converged, as a function of
domain dimensions, for Li=Lc=45.

We may also compare the values of xs with values re-
ported in previous studies �9,13,37,50–53�. Consistent with
other studies, we find for Re	6.2 the stagnation point obeys

xs � 0.5 + 0.067�Re − 6.2� ,

with specific converged values: xs=1.422 at Re=20 and xs
=2.762 at Re=40. These agree very will with recent compu-
tational studies by Giannetti and Luchini �13� and Ye et al.
�53�.

Examination of streamwise velocity profiles is found to
provide a more detailed view of base-flow distortion due to
the finite-size effects. Figure 16 shows velocity profiles at
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location x=3. Only a limited cross-stream range in y is
shown in the vicinity of where the streamwise velocity
reaches its maximum, as this is where the effects of domain
confinement are most pronounced. Constriction of the cross-
stream mesh leads to an especially inaccurate calculation of
the base flow, particularly at low Re, while the effect of
restricted inflow length is less significant in general �Fig.
16�a� and 16�c��. In any case, the base flow is again seen to
be highly converged, as a function of domain dimensions, for
Li=Lc=45.

The dependence of the linear stability calculations on do-
main size is examined through determination of the critical
Reynolds number, Rec, on different domains. For each do-
main, we compute the base flow and the eigenvalues at Re
=43, 44, 45, and 46. From these we extrapolate to find Rec
where the real part of the leading eigenvalue crosses zero.
The results are shown in Fig. 17, where as before we report
percentage error in the value of Rec with respect to the value
obtained using Li=65 and Lc=65, respectively. Interestingly,
one sees very little effect of cross-stream restriction here. In
any case, Rec is well determined for Li=Lc=45, with an error
of less than 0.1%.

We may also compare directly the value we obtain for Rec
with that obtained in other studies. To three significant fig-
ures, with Li=Lc=45, we find

Rec = 46.6.

This value agrees to within half a percent with recent stabil-
ity calculations by Giannetti and Luchini �13� and Marquet et
al. �28� who quote values of Rec=46.7 and Rec=46.8, re-
spectively.

Finally, having set the overall mesh dimensions, we con-
sider the convergence of computations with respect to the
polynomial order of the spectral-element expansion. The
polynomial order is chosen to ensure there is the necessary
refinement to resolve the finest characteristics of the flow at
the highest Reynolds number under consideration. Base flow
and subsequent transient growth calculations at Re=46 have
been carried out for a range of polynomial orders as summa-
rized in Table II. A polynomial order of P=6 is found to be
sufficient and is used for all results reported in Sec. IV.
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