
libHPC: Software sustainability and reuse through
metadata preservation

Jeremy Cohen, John Darlington,
Brian Fuchs

London e-Science Centre
Department of Computing
Imperial College London

South Kensington Campus
London SW7 2AZ, UK

Email: {jeremy.cohen, j.darlington,
b.fuchs}@imperial.ac.uk

David Moxey, Chris Cantwell,
Pavel Burovskiy, Spencer Sherwin

Department of Aeronautics
Imperial College London

South Kensington Campus
London SW7 2AZ, UK

Email: {d.moxey, c.cantwell,
p.burovskiy, s.sherwin}

@imperial.ac.uk

Neil Chue Hong
Software Sustainability Institute

University of Edinburgh
James Clerk Maxwell Building

Mayfield Road
Edinburgh EH9 3JZ, UK

Email: n.chuehong@software.ac.uk

Abstract—Software development, particularly of complex sci-
entific applications, requires a detailed understanding of the
problem(s) to be solved and an ability to translate this under-
standing into the generic constructs of a programming language.
We believe that such knowledge – information about a code’s
“building blocks”, especially the low-level functions and pro-
cedures in which domain-specific tasks are implemented – can
be very effectively leveraged to optimise code execution across
platforms and operating systems. However, all too often such
knowledge gets lost during the development process, which can
bury the scientist’s understanding in the code in a manner that
makes it difficult to recover or extract later on. In this paper, we
describe our work in the EPSRC-funded libHPC project to build
a framework that captures and utilises this information to achieve
optimised performance in dynamic, heterogeneous networked
execution environments. The aim of the framework is to allow
scientists to work in high-level scripting environments based on
component libraries to provide descriptions of applications which
can then be mapped to optimal execution configurations based
on available resources. A key element in our approach is the
use of “co-ordination forms” – or functional paradigms – for
creating optimised execution plans from components. Our main
exemplar application is an advanced finite element framework,
Nektar++, and we detail ongoing work to undertake profiling and
performance analysis to extract software metadata and derive
optimal execution configurations, to target resources based on
their hardware metadata.

I. INTRODUCTION

Software development, particularly of complex scientific
applications, requires a detailed understanding of advanced
technical problems and an ability to translate this informa-
tion into the generic constructs provided by a programming
language. In undertaking this implementation process, the
scientist’s knowledge is encapsulated within the code in a
manner that makes it extremely challenging for others to
extract or extend at a later date. While the code may still
continue to run as the original developer intended, the lack of
any information about how the software is built and operates
can make subsequent maintenance of the application very
challenging.

This is likely to have a serious impact on its long term

sustainability as other software or systems change around
it. In modern heterogeneous and distributed processing envi-
ronments, loss of domain knowledge within code during the
software development process can cause further challenges. In-
formation about code implementation/operation and the ability
to use this information to configure software inputs, modify the
operation of the software or tailor compute platform selection
to the code can play a major role in optimising performance.

Large-scale computing facilities present opportunities to
scale applications across much larger numbers of resources to
achieve faster processing, more detailed results or to handle
larger quantities of data. With the emergence of cloud comput-
ing infrastructure services and ever increasing network band-
width that make accessing remote resources more practical,
these large facilities are increasingly likely to be remote and
owned by a third-party. We suggest that efficiently targeting
code to such systems, which may change frequently, can to
some extent be automated with the availability of sufficient
metadata. We further believe that the long term use and further
development of such software can be aided by preserving
explicit information about how software is structured and
the thinking behind specific implementation approaches and
choices.

Efficiently parallelising code to make use of distributed
or multi-core platforms can be complex and solutions may
only work optimally on the platform(s) that they have been
developed for. If end users can avoid the need to handle such
low level issues, there is the potential to simplify things for
them while also allowing more efficient, automated selection
and configuration of resources. A key element in our approach
is the use of “co-ordination forms” – or functional paradigms
– for creating optimised execution plans from components.
These operators provide a high-level application description
language that is formed of both domain-specific constructs
tailored to specific scientific fields and more generic functional
operators. They offer a rich array of options for specifying
application semantics.

Work is being undertaken as part of the libHPC project,



a 2-year UK EPSRC-funded research project. The project
team consists of two groups of researchers at Imperial College
London – computer scientists with experience in developing
and working with computational Grid middleware, software
components and cloud computing technologies, and domain
scientists with high-order finite element method expertise and
experience of applying these techniques across a range of
scientific domains. Support to ensure the long-term sustainabil-
ity and applicability of the project outputs is being provided
by the Software Sustainability Institute at the University of
Edinburgh [1]. The project also has an element of commercial
development support to assist in producing a demonstrator.

In this paper, we describe the work that led to the libHPC
approach and discuss how it can support the optimised execu-
tion of software across a range of computational platforms. We
also show how componentised elements of software can be re-
used alongside different applications within a specific domain.
We then describe ongoing work with our main exemplar
application, Nektar++ [2], [3], to develop a finite element pre-
processing library that can use hardware metadata to optimise
the structure of the discrete matrix systems corresponding to
a given finite element mesh.

II. BACKGROUND

Software components, if sufficiently fine-grained, present
the possibility of building applications from a group of code
blocks that each provide some element of the end functionality.
In modern service-oriented architectures [4] this approach is
common and workflow management systems such as Tav-
erna [5], [6], [7] and Triana [8], [9] provide the ability to spec-
ify and orchestrate dataflow around a system of services which
may be remotely located. Remote services are generally static
with an instance anchored at a known fixed location. Metadata
(for example, Web Services Description Language [10] in the
case of Web Services) defines the interface to these services
and the format of data required to communicate with them.

The Imperial College e-Science Networked Infrastructure
(ICENI) [11], [12] took a slightly different approach, allowing
applications to be built from abstract software components
that, rather than being live, deployed instances of some service,
are simply high-level metadata descriptions. The component
model described in [13] defines separate metadata for a
component’s interface, meaning and behaviour allowing much
more knowledge to be captured than in a traditional interface
definition. Middleware services then selected suitable execu-
tion resources and concrete component instances, deploying
the components, potentially on different nodes in different
physical locations, and setting up communication paths be-
tween them to enable application execution to take place.

An abstract component description provides enough infor-
mation about a component’s capabilities without representing
a specific concrete instance of the component. A hierarchical
component tree contains the most abstract component defi-
nition at its root and concrete component implementations
as its leaf nodes. A linear solver component, for example
may be realisable using different algorithms, e.g. Jacobi or

BiConjugate Gradient, and for each of these algorithms, im-
plementations may be available that are optimised to specific
hardware, e.g. an MPI parallel implementation optimised for
use on a cluster with low-latency interconnects and a multi-
core x86 64 implementation optimised for local execution on
a 64-bit multi-core x86-based CPU.

In theory, this approach offers the possibility of automating
the building of custom applications, on-the-fly. In reality, a
full component ecosystem with sufficiently large numbers of
fine-grained components would be likely to take some time to
emerge and mature, and components would initially be much
more coarse-grained, even to the point of a component being
a complete application. This was considered to be one of the
problems preventing wider adoption of the ICENI framework.
In the libHPC project, we are aiming to take advantage of
component hierarchies and metadata to enable selection of
suitable resources from those available shortly before runtime,
but we also recognise that “components” may be complete
applications or significant elements of applications that can
be augmented with additional functionality to optimise specific
runtime processes.

In addition to using metadata to maintain information about
software and hardware platforms, we are also working to
simplify the way that end users define their applications or
tasks. Rather than having to write low-level code or scripts,
a higher-level means of application description would enable
scientists/researchers and other end users to describe in more
simple terms what they want to achieve and lower the barrier
to entry for accessing complex modern computational infras-
tructure. A key element of this is the concept of coordination
forms as described by Darlington et al. [14] which provide
a mathematical approach to describing high-level application
constructs. In our work, we intend to process these descriptions
into a set of suitable software components and ultimately select
concrete component instances that are most appropriate for the
available computational resources. The aim is to enable end
users to specify application functionality in a simpler manner
while still obtaining acceptable performance that leverages
tested and optimised software components.

The main exemplar application for the initial phase of
work carried out as part of libHPC is Nektar++, a high-
order finite element framework under ongoing development
by teams at University of Utah and Imperial College London.
The software is open source and provides algorithms for high-
order spectral/hp methods. Nektar++ is written in C++ and is
ideal for this work because it consists of a number of software
components providing different methods and capabilities, en-
abling processing of a wide range of inputs. Nektar++ can
run serially or in parallel and takes an XML-based input file
providing comprehensive metadata describing the problem to
be solved. This is ideal since it provides sufficient information
to make choices about the optimal hardware platform for a
given run of the application. It also provides a good base to
convert a high-level application description to.



III. THE LIBHPC FRAMEWORK

The libHPC framework consists of a number of interacting
services that handle the process of taking an end-user’s high-
level description of the task that they want to carry out on their
data and undertaking this task in an optimal manner. A number
of intermediate steps are carried out in order for the job to
be processed and run. These include converting the user’s
high-level description into a group of one or more concrete
processing tasks and selecting suitable hardware from a pool
of available resources. Examples of additional steps that may
be carried out include the dynamic addition of optimisation
libraries to the base code or pre-processing input files based
on data semantics.

The multi-layered abstractions that libHPC proposes ensure
that low-level implementation details need not be specified in
a job description. This, in turn, helps to ensure that application
descriptions are not tied to specific hardware features or library
implementations that may change or become unavailable over
time. Note that it is the application description that is generic.
When this description is mapped into a concrete execution
plan, it will use native code that will execute on selected
hardware, however, each execution may result in selection of
different code and/or hardware. The high-level application,
which represents the end-user’s view, is ensured long-term
sustainability since as underlying hardware changes or new
features become available, new software implementations can
be made available and advertised using their metadata to
provide the functionality required by the high-level application
description.

We recognise that the complete vision set out by libHPC
is complex and will take time to develop. While initial
implementation work is underway, the libHPC framework is
continuing to evolve and we expect ongoing developments to
the framework design and structure as further application types
from different domains are investigated.

The main functions and services of the libHPC framework
are described below. Not all jobs are required to use all
elements of the framework. For example, a developer with
coding knowledge may prefer to specify their job through
a lower-level scripting approach rather than writing a more
abstract coordination forms-based description of their job.

• Coordination Forms/DSL Pre-processor: This service
takes a high-level application description based on a com-
bination of domain-specific constructs and more generic
control and data flow structures. This description is
converted into an intermediate job process definition that
describes a set of component types and how they are
connected. Later in the process, this information will
be further concretised by specifying actual component
instances and the resources they will execute on.

• Metadata repositories: Hardware and software metadata
repositories provide information about hardware resource
specification and software capabilities.

• Job Mapper Service: This service is responsible for re-
solving application requirements against metadata about

available hardware and software. The mapping process
converts an abstract application description into a con-
crete plan of how the application will be run. This
includes the actual software service(s) that will be used
and the hardware that will be used to run the service(s).

• Job Deployment Service: The deployment service is
responsible for provisioning resources with the required
software before a job can be run, and for managing the
running of jobs. The mapper will provide details of the
resources and software to be used, the deployment service
then needs to ensure that the required software is present
on the hardware resources and if not, it needs to be moved
onto the resources and configured before the job can be
run.

• Node Service: Every hardware resource that is part of
a libHPC framework deployment runs an instance of the
node service. This service manages resource metadata and
regularly synchronises its status to a metadata repository.
The node service is also responsible for handling the
running of jobs on the local resource.

• Node Manager Service: The node manager service man-
ages a pool of nodes. These may be statically deployed
nodes at a given location or they may be dynamically
provisioned cloud nodes. In the case of cloud nodes, the
service is responsible for starting and stopping the nodes
and may advertise resource metadata for cloud resources
that do not yet exist and are provisioned when required.

A. Metadata
Metadata is at the core of libHPC. We focus on two types of

metadata. Hardware metadata describing processing resources
and other computational hardware and software metadata
focussing on software applications, libraries or components.
The focus of these two different types of metadata differs in
that hardware metadata aims to provide a live view of the
status of resources at the current time while software metadata
focuses on the preservation of historic information that would
otherwise be lost.

B. Software
Software metadata aims to preserve as much of a de-

veloper’s original design intentions as possible. In addition,
general software specification information and hardware re-
quirements are also provided. Representation of this metadata
can be a challenge. Some of the data must be available in
a machine readable format to allow operation of services
that select software and match it to suitable hardware. Other
information may be targeted at individuals tasked with up-
dating and maintaining software and may be represented in
a human readable, free-form format. The key is to support
long-term sustainability and usability of software by storing
necessary information to ensure it can be effectively used and
maintained.

C. Hardware
Hardware metadata differs from software metadata in that it

presents a current picture of the fabric of available hardware



resources, their specifications and their current load. While
some of this data will be static, such as that defining the
specification of resources, the current state of a resource
including its available memory, CPU cores, available stor-
age, number of running processes, etc. changes frequently
and needs to be regularly published to a hardware metadata
repository or obtained directly from the resource. In the case of
Infrastructure-as-a-Service (IaaS) platforms, where resources
may not actually be available until they’re requested from the
cloud platform, metadata can be stored in a repository and
a node manager service handles the starting of the resources
when they are required.

IV. LIBFEMPP - A FINITE ELEMENT METHOD
PRE-PROCESSOR COMPONENT

In addition to the main elements of the libHPC framework,
there is scope to develop various domain-specific components
to support and optimise the running of applications. Working
with the Nektar++ finite element framework, the first of these
components to be developed is libFEMpp. This component
takes the form of a support library that can be linked against
Nektar++ and uses hardware metadata to optimise matrix-
vector multiplication routines for the chosen processing plat-
form, combined with optimisations which can be made based
on the connectivity information of a finite element mesh.

Given a finite-element problem represented as a mesh of
disjoint elements in two or three dimensions, one generally
constructs matrices which represent key mathematical opera-
tions locally on each element. Where elements are connected,
degrees of freedom are duplicated along faces, edges and
vertices according to the connectivity of the mesh. How this
duplication is removed leads to a rich structure of operator
evaluation strategies; generally one may choose to construct
a large sparse matrix representing the global matrix for
the entire mesh, or alternatively perform element-by-element
matrix multiplications and reconstruct the global solution
through a mapping. The chosen approach depends on various
properties, including the underlying hardware (for example,
CPU architecture, cache size and clock speed).

The aim of libFEMpp is to take a hybrid approach which
combines aspects of both evaluation strategies to improve
performance. To achieve this, elements are grouped into
patches which are then coalesced, removing duplicate degrees
of freedom inside each patch. The main purpose of libFEMpp
is to automate the choice of the number of groups dependent
upon the hardware characteristics of the platform. In particular,
we target coalesced matrix sizes to be as close to possible
to a given cache size. A number of benchmarking tests have
been undertaken on different hardware to see how performance
changes when working with matrices of different sizes or
structures and this information is used to allow libFEMpp to
create the most appropriate patches for optimal performance
on a particular hardware platform.

Development of libFEMpp is ongoing. The library is written
in C with a C++ wrapper and its functionality is portable to

other finite element and mesh-oriented codes, in addition to
Nektar++.

V. CONCLUSION

In this paper, we have described on-going work in creating
a framework for enabling domain-developers to express design
intentions in a way that can be used to improve both applica-
tion performance and response to user requirements. On the
basis of our experience thus far, we would like to propose
that this kind of framework offers a particularly promising
approach to optimising performance against user requirements
in “pay-as-you-go” Cloud environments which are becoming
increasingly a part of research computing. To illustrate this
idea, we have described current work to build a finite element
support library and we are continuing to to build the various
elements of the framework with the aim of producing an end-
to-end demonstrator.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the
Engineering and Physical Sciences Research Council (EPSRC)
in funding the project libHPC: Intelligent Component-based
Development of HPC Applications (EP/I030239/1).

REFERENCES

[1] The Software Sustainability Institute. http://www.software.ac.uk/
[2] P. E. J. Vos, S. J. Sherwin and M. Kirby. From h to p efficiently:

Implementing finite and spectral/hp element discretisations to achieve
optimal performance at low and high order approximations. J. Comput.
Phys., vol 229, pp. 5161-5181, 2010.

[3] Nektar++ spectral/hp element framework. http://www.nektar.info/
[4] C. M. MacKenzie, K. Laskey, F. McCabe, P. Brown and R.Metz (Eds.).

Reference Model for Service Oriented Architecture 1.0. OASIS Standard,
October 2006. Available at http://docs.oasis-open.org/soa-rm/v1.0/.

[5] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and
T. Oinn. Taverna: a tool for building and running workflows of services.
Nucleic Acids Research, vol. 34, iss. Web Server issue, pp. 729-732, 2006.

[6] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn, and C. Goble. Taverna, reloaded. In SSDBM 2010,
Heidelberg, Germany, 2010.

[7] Taverna – open source and domain independent Workflow Management
System. http://www.taverna.org.uk

[8] Triana – open source problem solving software. http://www.trianacode.
org/

[9] I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana Workflow
Environment: Architecture and Applications. In I. Taylor, E. Deelman, D.
Gannon, and M. Shields, editors, Workflows for e-Science, pp. 320–339.
Springer, New York, Secaucus, NJ, USA, 2007.

[10] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C Note. Ariba, Inter-
national Business Machines Corporation and Microsoft. 2001. Available
at http://www.w3.org/TR/wsdl

[11] N. Furmento, A. Mayer, S. McGough, S. Newhouse, A. J. Field and J.
Darlington. ICENI: Optimisation of component applications within a Grid
environment. Parallel Computing, 28(12):1753–1772. Elsevier, December
2002.

[12] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. New-
house and J. Darlington. Meaning and Behaviour in Grid Oriented
Components. In Proceedings of the 3rd International Workshop on Grid
Computing. pp. 100–111. Springer-Verlag, November 2002.

[13] A. E. Mayer. Composite Construction of High Performance Scientific
Applications. PhD Thesis. Department of Computing, Imperial College,
University of London. 2001.

[14] J. Darlington, Y. Guo, H. W. To and J. Yang. Functional Skeletons
for Parallel Coordination. EURO-PAR’95 Parallel Processing, pp. 55–69,
Springer-Verlag, 1995.


