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Abstract—As the capabilities and diversity of computational
platforms continue to grow, scientific software is becoming ever
more complex in order to target resources effectively. In the libhpc
project we are developing a suite of tools and services to simplify
job description and execution on heterogeneous infrastructures.
This paper presents Nekkloud, a web-based software environ-
ment, built on aspects of the libhpc framework, for running the
Nektar++ high-order finite element code on both cluster and cloud
platforms, while improving the accessibility of the software for
end-users and improving the user experience. Nektar++ provides
a suite of solvers which span a range of scientific domains,
ensuring that Nekkloud has a broad range of use cases. We
describe the Nekkloud environment, its use and its ability to target
both local campus cluster infrastructure and cloud computing
resources, enabling users to make better use of the facilities
available to them.

I. INTRODUCTION

As computer architectures have evolved, per-processor
core counts have increased but maximum clock speeds have
remained static. Developers have therefore been forced to
efficiently parallelise their code in order to take advantage
of the additional computing power available from multi-core
processors, multi-node infrastructures such as clusters and
clouds and more exotic coprocessor computing platforms. For
many scientists and researchers, High Performance Computing
(HPC) infrastructure takes the form of local campus-based
clusters. Setting up and fine-tuning a code to run efficiently
on such computing resources is often a challenging task and
usually involves a highly technical understanding of the system
configuration and underlying hardware. Cloud computing en-
vironments provide an alternative avenue, enabling on-demand
HPC capabilities, but come with an additional set of technical
hurdles in terms of resource preparation and deployment.

The challenges associated with making effective use of
HPC resources have been acknowledged previously in the
literature [6], [18]. E-Science research has developed a range
of solutions to the many challenges of building and running
complex scientific applications, particularly in the context of
Grid Computing infrastructure, e.g. [7], [9], [13]. Tools and
services have been developed which support scientists in using
large-scale software more effectively, while reducing their need
to acquire complex technical computing skills, e.g. [15], [20].
With the emergence of new methods of accessing computing
resources, for example, on-demand Infrastructure-as-a-Service
(IaaS) cloud computing platforms (e.g. Amazon EC2 [5]),

scientists have further options for utilising different numbers
and types of resources and controlling how they run their code.

There has also been extensive work on the development
of application portals or science gateways [21] to support the
running of particular applications or groups of applications,
for example [17]. Services such as Apache Rave provide
toolkits to develop portals for orchestrating web-based services
and data [14] while workflow management systems such as
Taverna [8] offer a means to build complex workflows based
on multiple external computational services. Other solutions
are domain specific. For example, in computational biology,
the Galaxy CloudMan [3] web interface provides user-friendly
access to cloud infrastructure for scientists using the Galaxy
platform, a suite of computational biology research tools.
Similarly, the BioHPC project [19] presents the user with a
web interface for deploying computational biology simulations
on Windows HPC clusters.

In this paper we present Nekkloud which brings together
the concept of an application portal with infrastructure access
and management services developed as part of the libhpc
framework [1]. It provides a web-based software environment
to support the use of Nektar++ [2], a high-order finite ele-
ment framework, on both clusters and private/public clouds
by scientists and engineers across a range of application
domains. The libhpc framework is being developed to simplify
the execution of HPC codes in distributed, heterogeneous
computing environments. It is similar in its aims to Apache
Airavata [16] but differs in its use of co-ordination forms –
high-level functional constructs – to describe applications, its
model of interchangeable optimised component implementa-
tions and its core mapping services that dynamically select
the most appropriate components and hardware based on
available resources. At present Nekkloud uses only the libhpc
deployment service and in this work we have extended this
service with a new connector that provides the ability to deploy
to clusters running PBS Pro [4]. This has enabled the Nekkloud
system to operate with the Imperial College High Performance
Computing service that is managed by Imperial College for use
by its researchers and academics.

We consider the main contributions of this paper to be:

• The development of a modular and extensible software
environment to enable scientists and non-technical
users to perform large-scale Nektar++ simulations on
either cluster or cloud infrastructure.
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• Integration of the libhpc deployment service with both
existing campus cluster resources and private/public
cloud infrastructure.

• A web-frontend module for the exemplar application
Nektar++ and demonstration of an improved user
experience when running Nektar++ jobs.

We note that the aim of this paper is to present an overview
of the Nekkloud system, our motivations for its design and
the benefit of such a system for end-users. As such, we do
not consider performance or security related matters in this
paper. However, the performance and relative scalings on both
cloud and cluster architectures is a topic that we are currently
investigating in more detail in other work [11].

In section II we outline the current challenges for non-
technical users in using finite element codes on HPC facilities
and describe our motivation for building Nekkloud, outlining
the goals of the project. In section III we provide details of
the architecture and implementation of Nekkloud and give an
overview of the components which are used to construct the
system. We then discuss the experience for an end-user using
Nekkloud in section IV and present a brief use case example.

II. CHALLENGES & MOTIVATION

Finite element codes are typically used by scientists who
have sufficient computer science expertise to deploy and run
the code on a local standalone system or on a homogeneous
compute cluster provided by their institution or enterprise.
Consequently, users lacking this expertise are unable to run
such codes without support from a computer scientist or some-
one with specialist computing knowledge. Even for technically
trained users, modern HPC facilities are becoming increas-
ingly complex and difficult to use, especially if maximum
performance is to be attained. In addition to the challenges
developers face in writing and building code to make effective
use of target resources, end-users need to deploy this code
on their resources which will include installing binaries or
building from source. Typically, modern HPC software also re-
quires the installation of multiple dependencies, which further
complicates the compilation process. Finally, to run a job on a
cluster, users will often need to write shell scripts or otherwise
define job-specific information, and additionally transfer files
to and from the cluster manually.

Significant manpower is therefore required in order to train
users to effectively use cluster resources, and moreover the
lack of technical knowledge is often too large for many users
to contemplate using HPC resources. Additionally, users will
only tend to work with a small number of clusters (usually
local systems and possibly a national facility). This discourages
users from diversifying their infrastructure usage, even when
other potentially more powerful resources are available.

It is also noteworthy that scientists and engineers who
would like to run large scale simulations do not always
have access to appropriate resources. The financial costs of
installation and maintenance of a large local cluster are often
too high, and in many cases there is not sufficient demand
inside an institution to warrant such expenditure. In these
cases, the use of cloud computing resources and remote
clusters provides an attractive alternative and gives the end-
user a range of computing facilities to suit a wide variety of

cost and resource requirements. Even where cluster access is
available, queueing times on local resources may mean that
for time-critical applications, cloud access is more desirable as
resources are usually instantly available through large public-
domain providers. However, for many end-users, the technical
challenge of building custom images for virtual machines,
which are prevalent throughout the cloud environment, pre-
cludes their use of this type of resource.

The ultimate goal of the Nekkloud system is therefore
to address these issues by providing a flexible and easy-to-
use interface which encapsulates many of the difficulties users
may have when deploying to different types of resources. We
focus, therefore, on a single exemplar application – the Nek-
tar++ framework – which has applications in many scientific
fields. The design of the system means that end-users without
extensive computer science knowledge are able to undertake
Nektar++ computations using the platform that most suits their
requirements, at the same time isolating them from the intricate
details which are involved in deployment for each platform.

In this paper, we describe how Nekkloud can provide an
effective interface to real-world scientific applications through
a flexible deployment layer. Nektar++ itself is a powerful open-
source framework written in C++ for solving partial differential
equations (PDEs) from a variety of scientific domains using
the spectral/hp element method, an extension of the linear
finite element method (FEM) to use high-order polynomials.
We describe an example use case based on the Nektar++
cardiac electrophysiology solver to show how Nektar++ can be
effectively harnessed by non-technical users in order to provide
real-time patient-specific feedback for clinicians through the
Nekkloud interface.

To conclude this section, we summarise below the main
motivations and aims in the design of Nekkloud:

• Minimise the computer science training needed by
scientists to take advantage of HPC facilities.

• Enable seamless access to both campus HPC infras-
tructure as well as private and public cloud platforms.

• Encourage a more efficient use of available comput-
ing infrastructure by allowing users to switch easily
between resources.

• Present a simple, high-level user interface for job
specification that removes the need for command-line
tools.

III. ARCHITECTURE & IMPLEMENTATION

The user-facing element of the Nekkloud system is a web-
based interface that is designed specifically to support the
solvers provided by Nektar++ and the properties required by
these solvers. The back-end of the system uses components
from the libhpc framework handling the software deployment
and execution. While Nekkloud provides an interface targeted
at Nektar++, alternative web interfaces could be developed to
support different applications or domains while continuing to
use the same back-end libhpc services.

The Nekkloud web application is implemented in Python
using the Django Web framework. Web pages are built
using the Bootstrap CSS and Javascript framework. The
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Fig. 1. Architecture of the Nekkloud system.

web application uses the libhpc deployment service’s
JobServiceClient class which communicates with the
server-side libhpc deployment service using JSON-RPC com-
munication via Python’s jsonrpclib library [12]. The deploy-
ment service provides connectors that allow it to support dif-
ferent types of underlying hardware platforms such as Portable
Batch System (PBS) clusters and private/public clouds.

A. Nekkloud System Components

Figure 1 shows the architecture of the Nekkloud system
which consists of the main Nekkloud application and web-
based user interface which makes use of our existing libhpc
deployment service along with its OpenStack private cloud
connector service and the PBS Cluster service used to target
PBS-based clusters. We now provide a brief description of the
core components of the Nekkloud system:

Controller: The controller is the core of the system and
handles the main application logic. It works with data from
the local database, data that has been provided by other libhpc
services via the REST API or data that comes from users via
the web views.

Database: The database stores user, job and input/output file
information.

User views: Provide the Nekkloud web pages that users
interact with via their web browser.

REST API: The REST API is designed to be accessed by
other internal libhpc services that need to provide information
to, or obtain information from, Nekkloud (e.g. updating job
status information).

Libhpc Deployment Service: The deployment service han-
dles the configuration and execution of jobs on remote re-
sources. Connectors allow it to work with a range of underlying
infrastructures such as cluster batch submission systems and
infrastructure clouds. Details of the existing libhpc deployment
service and the OpenStack connector are described in [11].

PBS Cluster Service: The PBS cluster service leverages saga-
python [20] to allow deployment of MPI-based parallel jobs
on PBS-based clusters.

OpenStack Service: The OpenStack service provisions in-
frastructure cloud resources on our local, private OpenStack

cloud, configures MPI and then submits and runs parallel jobs
on these resources.

B. PBS Cluster Service

The PBS Cluster Service is a deployment connector that
has been developed for the libhpc deployment service to
enable the running of jobs on clusters managed by PBS. The
connector was developed to allow the integration of the central
Imperial College HPC service with the libhpc framework and,
ultimately, for this platform to become a target for running
jobs from Nekkloud. The service makes use of the saga-python
library that provides a Python implementation of the Simple
API for Grid Applications (SAGA) [10]. Saga-python provides
a series of adapters for connecting to and interacting with
remote resources or job submission systems. We use the PBS
SSH adapter to allow us to connect remotely to the interactive
job submission node for the target cluster and submit and
monitor jobs.

In order to run a user’s job on a PBS cluster, Nekkloud
communicates with the libhpc deployment service passing the
job specification, including the required deployment resources,
as entered by the user via Nekkloud’s web interface. The
deployment service delegates control to the relevant platform
connector, in this case the PBS Cluster Service, which ini-
tialises and then runs the job.

When the job runs on the PBS cluster it will generate
output data that needs to be stored. When initialising a new job,
the PBS connector sets up a job directory on the target cluster
using saga-python’s file and directory tools. Input data files will
have been uploaded by Nekkloud to a temporary staging area
on the application server and they are then copied from here
to the job directory on the remote cluster using saga-python.
A SAGA Job object is then created and configured with the
job properties. Saga-python generates a PBS job script based
on the properties of this Job object. For our local HPC service
jobs it is necessary to run some commands before and after
the main MPI parallel job is executed. The SAGA Description
object, which is used to provide the properties to initialise a
new Job object, did not offer the ability to add pre- and post-
execution commands to the script generated by saga-python, so
a small modification was made to allow this. The pre-execution
commands are required to initialise some properties of the
cluster environment before an MPI job can begin running and
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Fig. 2. The Nekkloud job creation page.

the post-execution commands are used to compress output data
into an archive file to be sent back to the application server.

The PBS Cluster Service is implemented as a command-
line tool to which a set of parameters are provided. The libhpc
deployment service runs an instance of the PBS deployer in a
new process every time a job is to be run. This avoids potential
threading problems in Python that would occur if multiple
instances of the PBS deployer were run in separate threads
within the main libhpc deployer application.

IV. USER EXPERIENCE

The user facing element of Nekkloud is a web-based inter-
face through which users specify and manage their jobs. The
target audience for the user interface is scientists who may not
have a computing background and the aim in designing it has
been to ensure that it is uncluttered and straightforward to use.
Once an account has been set up, users can log in to the system
and configure and run their Nektar++ jobs. A job consists
of details of the Nektar++ solver to be used, the input data
file(s), hardware requirements and possibly other job-specific
information that may be available depending on the solver the
user has selected (see Figure 2). Nektar++ input files are in
XML format and end users of the software are likely to either
be familiar with creating these files themselves, or understand
enough about the file content to make necessary changes to a
template file provided by an experienced user. The platform
selection box allows the user to select between local cluster
resources provided by the Imperial College HPC service, a
local OpenStack private cloud infrastructure and resources
provided by the Amazon EC2 public cloud service [5]. When
a selection is made from the “Compute platform” drop-down
box, the “Resource type” list is updated with the types of
resources provided by the selected platform. Based on the
resource type selected, the system then calculates how many
compute nodes must be started to provide the total number of
cores requested by the user. Figure 3 shows the resource types
that are available on the Imperial College HPC service clusters
when this platform is selected.

Job input files are selected and uploaded via the web
interface which also provides options to undertake the post-
processing tasks of combining the generated field files and

Fig. 3. The resource types provided by the IC HPC service cluster.

producing a video animation. A running job can be monitored
via the job status page (see Figure 4) which displays current
job status and a live feed of output data from the job execution.

Fig. 4. Main panel of Nekkloud job status page showing debug output for a
job run on the IC HPC cluster, and inset, sample output.

Nekkloud’s approach contrasts with the traditional method
of running Nektar++ which involves installing binaries or
building source code, manually preparing job submission
scripts or provisioning cloud resources. Once a job has run, the
user is responsible for collecting and managing output data and
writing any scripts required for post-processing output data.

A. Example use case: Cardiac Electrophysiology

Our use case example aims to highlight the benefits of
the Nekkloud web interface and how it can enable users who
are not equipped with specialist HPC knowledge to run finite
element codes on HPC resources such as clusters and clouds.
We consider a cardiac electrophysiologist, who is performing
cardiac ablation on a patient with an atrial arrhythmia. Prior
to the procedure the patient has been imaged using Magnetic
Resonance Imaging (MRI) and a geometry and finite element
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mesh has been constructed of the patient’s left atrium using
third-party tools. During the procedure the electrophysiologist
gathers electrical recordings from inside the patient’s heart.
To complement this static information, the electrophysiologist
can use the finite element model to simulate the electrical
propagation patterns through the patient-specific atrium model.
The electrophysiologist uses Nekkloud to launch a simulation,
based on Nektar++’s Cardiac Electrophysiology solver, of the
patient’s left atrium, providing the necessary electrophysiolog-
ical parameters on the web form and targeting the simulation
at 1024 cores of the institution’s local compute cluster. In the
event that the cluster is busy, the clinician might choose to pay
to run the job immediately on public cloud infrastructure. After
a few minutes the job completes and the electrophysiologist
views the generated video of the simulation to provide insight
into the next step of the clinical procedure. The job would have
taken many hours and may have required specialist computing
support to run on a desktop system in the clinical environment.

V. CONCLUSIONS

We have presented Nekkloud, a web application that en-
ables the running of the Nektar++ high-order finite element
analysis software on cluster and cloud infrastructure. Nekkloud
offers a significantly improved user experience, when com-
pared to the traditional command-line execution approach, for
the scientists and researchers that run the various solvers that
Nektar++ provides. Nekkloud plugs in to our existing campus
clusters, other remote PBS-based clusters, or cloud platforms,
allowing the running of more jobs at once or larger jobs
than may be possible with local infrastructure. Nekkloud is
currently a prototype and we have focused on the benefits it can
offer to end users with limited HPC knowledge by providing
a new approach to running Nektar++ rather than looking at
the performance of running jobs through Nekkloud. However,
tests running Nektar++ on more than 1,000 cores have shown
that the library scales well. While the raw performance of
running computations on cloud infrastructure without high-
performance interconnects will be lower than on a dedicated
HPC cluster, the ability to easily scale computations to larger
numbers of cores on clouds helps to mitigate such differences.
In the future it is intended to extend Nekkloud with automatic
platform selection based on user-specified metrics such as cost
or time, which is a planned addition to the libhpc framework.
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