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Abstract We propose a novel, minimally intrusive approach to adding fault tol-
erance to existing complex scientific simulation codes, used for addressing a broad
range of time-dependent problems on the next generation of supercomputers. Ex-
ascale systems have the potential to allow much larger, more accurate and scale-
resolving simulations of transient processes than can be performed on current
petascale systems. However, with a much larger number of components, exascale
computers are expected to suffer a node failure every few minutes. Many existing
parallel simulation codes are not tolerant of these failures and existing resilience
methodologies would necessitate major modifications or redesign of the applica-
tion. Our approach combines the proposed user-level failure mitigation extensions
to the Message-Passing Interface (MPI), with the concepts of message-logging and
remote in-memory checkpointing, to demonstrate how to add scalable resilience
to transient solvers. Logging MPI communication reduces the storage require-
ment of static data, such as finite element operators, and allows a spare MPI
process to rebuild these data structures independently of other ranks. Remote in-
memory checkpointing avoids disk I/O contention on large parallel filesystems. A
prototype implementation is applied to Nektar++, a scalable, production-ready
transient simulation framework. Forward-path and recovery-path performance of
the resilience algorithm is analysed through experiments using the solver for the
incompressible Navier-Stokes equations, and strong scaling of the approach is ob-
served.
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1 Introduction

One of the drivers for exascale computing is the requirement to solve tightly-
coupled computational problems of unprecedented scale in order to gain new and
improved insight into complex physical phenomena. This need spans scientific
domains such as industrial fluid dynamics, climate modelling, energy and person-
alised medicine. Models in these application areas are often mathematically for-
mulated in terms of time-dependent partial differential equations, and their com-
putational implementations utilise domain decomposition techniques and message
passing paradigms for communication in order to run on massively parallel dis-
tributed computing systems. A large number of, often highly-complex, production
codes already exist to numerically solve these problems. Such simulations, by their
transient nature, are frequently long-running, executing for several days or weeks.
Exascale systems, when they arrive, have the potential to allow much larger, more
accurate and scale-resolving simulations to be performed, the results of which will
have significant scientific and societal impact. However, there are several major
hurdles associated with practically using an exascale supercomputer, which need
to be overcome if codes are to scale efficiently on very large numbers of processing
cores so that such simulations remain cost-effective.

Algorithm and software resilience is now one of the greatest concerns in striving
towards exascale and interruption, due to component failure, is now considered a
major barrier to effectively using an exascale system with current numerical codes
[9,28]. Both hardware and software errors, such as component failures or operating
system crashes, may interrupt simulations or lead to non-deterministic results [27].
This is further exacerbated by the trend towards heterogeneous computing where
nodes are composed of multiple processing components and additional system-
level software layers. Failures typically necessitate a restart of the computation
and results in wasted time, energy and resources. Even with the use of high-quality
hardware, the number of components necessary to reach this level of throughput
leads to an overall system failure rate of once every few hours.

The need for resilience is already evident in the current generation of petascale
supercomputers with some recent systems having a mean-time-between-interrupts
(MTBI) of just a few hours. For example, the CPU-only portion of the Cray hybrid
Blue Waters system (22,640 nodes, 5.66 petaflops) is reported to have a MTBI of
8.6 hours [13], while the MTBI of 8192 nodes of the Tianhe-2 supercomputer
(equivalent to 17.33 PF) is just 2 hours [10]. In contrast, the Cray XK6/XK7
(Titan) at Oak Ridge National Laboratory (10-20 / 27 petaflops) achieves a MTBI
of 132/173hrs [2]. The anticipated failure rate of an exascale machine is likely to
be higher than present systems [8,9,28,23] and therefore application resilience is
critical in maintaining the usefulness of any future exascale system.

Minimising data movement at all levels within a system is an increasingly
important consideration. Exascale machines are likely to be characterised by high
flop-rates, high-parallelism and high costs to moving data within or between nodes
(in terms of performance and energy). Memory will also be increasingly hierarchi-
cal, incorporating newer technologies such as NVRAM, but with limited memory
close to the CPU. This consequently constrains the nature of resilience mechanisms
which can be employed.

A number of techniques already exist to improve the resilience of application
codes in the event of system degradation or failure, including checkpoint/restart,
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redundant computing and application-based resilience. These methods can be clas-
sified as either forward recovery or backward recovery. In the former, the algorithm
continues and corrects errors introduced by failures. Examples of this include re-
dundant computing or some algorithm-specific approaches. Forward-correcting al-
gorithms exist for some sub-components of the transient solvers considered, such
as conjugate gradient solvers [1], but these approaches do not typically provide
a comprehensive solution in the case of an error occurring outside of these com-
ponents. Furthermore, they require a significant intrusion into the application
code. In contrast, backward-recovery rolls back to the last previously recorded
globally consistent state and repeats calculations. A check-point is a snapshot of
the application state at a point during an application’s execution. Coordinated
checkpointing to stable storage is the most common backward-recovery technique
employed in current production transient simulation codes. A globally consistent
system state is written to disk periodically, allowing the application to be restarted
and continue from the saved state in the event of a failure. This can be achieved at
an application level through writing sufficient state data to disk to allow restart,
or more transparently at an operating system level by directly dumping memory
pages. The second approach, while simple, is typically more costly and many finite
element codes, for example, write only the solution state to disk on the basis that
the remaining state can be reconstructed easily when the simulation is restarted.
Even in this case, the volume of data and resulting I/O contention means that
highly parallel codes on current petascale systems might spend more than 25% of
their execution time performing check-pointing [27]. Dedicated nodes have been
employed for non-blocking check-pointing to minimise the effect of this bottleneck
and allow the computation to continue [26].

In-memory checkpoint-restart records a snapshot of the application memory
and allows recovery of the simulation in the event of an application fault or detected
but unrecoverable error [29,25]. It alleviates the disk I/O contention during normal
execution by storing check-points in volatile memory, potentially only writing out
to stable storage in the event an error occurs. Remote in-memory checkpoint-
restart further allows recovery in the event of a complete node failure. For example,
such an approach has been demonstrated with a molecular dynamics code on a
large-scale supercomputer in which checkpoints were stored both locally and on
a remote node, and showed over two orders of magnitude decrease in checkpoint
time and significant reduction in recovery time [31]. Cross-node resilience can also
be provided through erasure codes and check-sums, built into certain algorithms,
to reduce the storage overhead and these have recently been applied in the case of
linear solvers [20,32]. Finally, multi-level check-pointing attempts to balance the
performance and resilience capabilities of the above techniques [14,12]

Application-based resilience avoids the cost of restarting a simulation by detect-
ing failures and recovering failed processes. For message-passing interface (MPI)
programs, this may involve shrinking existing MPI communicators, or invoking a
spare process to take over the failed process. The latter is preferred in the con-
text of domain decomposition methods to avoid the expensive redistribution of
work necessary to maintain load balancing. A number of proposals and proto-
type implementations have already been reported. User-Level Failure Mitigation
(ULFM) [3,4] is a proposed extension to the MPI 4.0 standard which adds fault
tolerance semantics. ULFM provides three key additions to the MPI API. The
MPIX_Comm_revoke method invalidates a communicator and allows a process to no-
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tify other processes that a failure has occurred, for example to initiate recovery.
The MPIX _Comm _shrink method then reconstructs a revoked communicator con-
taining failed processes into a working communicator with those failed processes
omitted. Finally, MPIX Comm_agree implements an agreement algorithm, perform-
ing a logical AND operation on the boolean parameter across processes; this suc-
ceeds even if there are failed processes.

Other fault tolerance efforts include Reinit, which aims to improve on ULFM
for the case of bulk-synchronous codes to allow global backward non-shrinking
recovery [22]. However, most of this capability has since been incorporated into
the latest ULFM specification. FENIX [18,17] is a library which provides fault
tolerance without application shutdown and is built upon the ULFM capabilities.
ACR implements Automatic Checkpoint/Restart using replication of processes in
order to handle both soft and hard errors. FA-MPI proposes non-blocking transac-
tional operations as an extension to the MPI standard to provide scalable failure
detection, mitigation and recovery [19]. Finally, FT-MPI was an earlier precursor
to ULFM for adding fault tolerance to the MPI standard [16].

Existing approaches to incorporating resilience in scientific codes involve sub-
stantial modifications to the application code in order to add protection mech-
anisms to all the necessary data structures and, in some cases, may require a
complete redesign. Many of the demonstrators of these approaches are stencil ap-
plications, written specifically for illustrating the resilience algorithm and are not
necessarily representative of production codes. In this paper, we instead outline
a novel low-intrusion application-based resilience approach, building on ULFM,
specifically for tightly-coupled transient solvers. We illustrate our strategy through
a prototype implementation in Nektar+-+, a production-ready high-order spec-
tral/hp element framework for the solution of a wide range of partial differential
equations [5]. Our approach meets the following objectives:

— Necessitate minimal application code intervention or code redesign to allow
resilience to be easily added to existing codes;

— Allow the simulation to continue in the event of one or more concurrent hard
failures with limited interruption to surviving processes;

— Incur minimal forward-path overhead on execution performance to effect re-
silience;

— Ensure strong scalability of the resilience algorithm on massively parallel sys-
tems.

2 Algorithm and Implementation

We are particularly interested in exploiting the properties of algorithms used for
the solution of time-dependent initial value problems. Such problems involve the
evolution of one or more solution variables under the action of a (time-dependent)
partial differential equation beginning from some initial state. Without the addi-
tion of resilience, the failure of a single MPI process would typically lead to the
termination of the entire simulation, requiring a complete restart and backward-
recovery from the last checkpoint.

The resilience approach we describe here is independent of the particular nu-
merical discretisation used (finite difference, element, volume, etc), time-integration
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scheme and the specific time-dependent PDE to be solved. In general, the imple-
mentation fo solvers for PDEs can be broken down into two distinct phases. The
first is a set-up phase in which the necessary discrete operators or stencils are con-
structed. These are typically in the form of matrices which remain fixed throughout
the simulation. The cumulative storage of such operators is often large, compared
to solution vectors, and their construction requires global communication in order
to associate neighbouring degrees of freedom across partitions. The second phase
is the time-advancement of the initial conditions to the final state. The value of
the solution variables change during time integration but the discrete operators
do not. An exception might be if adaptivity of the computational discretisation is
employed, which is discussed later. The data generated during the first phase will
be referred to as static data, while the time-evolving data in the second phase will
be referred to as dynamic data.

In the event of a process failure (e.g. due to a hardware fault) we would like to
avoid the complete restart of the simulation on all processes, avoid checkpointing
to disk and instead substitute the failed process with a spare process which recovers
from data provided by a surviving process in order to continue the calculation.

2.1 Initialisation of spare processes

To leverage the capabilities of ULFM, we provide a custom error handler on
all communicators, rather than allowing MPI to automatically defer to calling
MPI_Abort when a failure occurs. Execution of the application proceeds as normal
but with a number of additional ranks allocated. The set of all processes are par-
titioned into worker and spare ranks immediately after MPI is initialised using
MPI Comm_split. This creates a sub-communicator in which the worker processes
participate. Spare processes are assigned to a null communicator and wait until a
failure occurs. They should proceed only on two events: a failure occurring, or; the
application terminating normally in which case MPI_Finalise must be called. To
achieve this on spare processes we call MPI_Comm_agree with a value of true imme-
diately after MPI_Init. On worker threads, the same call is made immediately prior
to MPI Finalise with a value of true or, in the event of an error being detected,
from the error handler with a value of false. Therefore, if the resulting conjuga-
tion evaluates to true, the application code must have completed successfully. If
it evaluates to false, this implies a process has failed, identifying that recovery is
required.

2.2 State Protection

In order to enable recovery on a replacement MPI process, the data structures
within the code must be protected in a way which allows their reconstruction on a
spare process. This is traditionally achieved in transient codes by check-pointing
the dynamic data to disk. Static data is not stored as this is regenerated when
the simulation is restarted. Checkpoints must be written out periodically and a
balance sought between anticipated failure rate and checkpoint frequency [11].
However, disk checkpointing is not scalable and will be infeasible for the purpose
of resilience at exascale.
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Fig. 1 Diagrammatic representation of the protection algorithm. Initialisation of solver, show-
ing three processes — two active and one spare — with ranks 4, j, and N, respectively. Rank 3
communicates static recovery data to rank j. After a number of steps, at time tc,, a remote
in-memory checkpoint occurs. The spare rank, N remains idle throughout. Red MPI regions
denote collective communication, while green regions denote pairwise communication.

State protection is depicted diagrammatically in Fig. 1. In our approach, rather
than writing to disk, we opt for remote in-memory check-pointing. Data on each
process is backed up to a partner process which requires only pairwise commu-
nication and is denoted by green blocks in Fig. 1. This ’buddy’ process is cho-
sen to balance resilience and performance and is typically on an adjacent node.
Depending on network topology and cluster configuration, a more distant node
may improve resilience to some less common failures, such as power distribution
faults[14]. However, such optimisations are beyond the scope of this study.

To perform on-the-fly independent recovery on a spare node, we will need
both the static and dynamic components of the data. However, depending on
the simulation code design and particularly for object-oriented codes, the static
data may be scattered throughout the code requiring extensive code modification
or redesign to enable backup and restoration of these data structures. We are
initially faced with two challenges: how do we backup the static data efficiently;
and, how do we do so with minimal code intervention? We can address both
concerns using the concept of message-logging during the initialisation phase of
the solver. We do not store the initialised static data structures themselves, but
rather the outcome of any MPI communications performed by the application
during the static phase, indicated by Record Comm in Fig. 1. This can be achieved
by intercepting calls to the MPI API and logging the result, if applicable. This
provides two key advantages: the volume of data is anticipated to be smaller than
the fully initialised data structures whose generation invoked the communication,
since exchanges occur along partition boundaries rather than within the partition
volume, and; very little modification is required to the existing application code.
To complete this aspect, we must annotate the code (through function calls) to
mark the beginning and end of the initialisation phase.

Dynamic data checkpointing is performed at regular intervals after the end of
the initialisation phase. These data typically consist of the solution vectors at the
time of checkpointing only and are relatively small in size compared to static data.
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Fig. 2 Diagrammatic representation of the recovery algorithm. Process A with rank ¢ fails
and, after enrolment and rank translation during recovery, process S is assigned rank i and
receives recovery data from rank j. Static and dynamic data is subsequently recovered to the
last checkpoint at time t¢, without requiring any further communication with surviving ranks.
The simulation then continues. Red MPI regions denote collective communication, while green
regions denote pairwise communication.

These are protected through duplication to the memory of a partner node. Further
optimisation or compression of this data is not considered within the scope of this
study.

2.3 MPI Communicator Recovery

ULFM allows for several recovery models, namely, shrink, spare and respawn.
Shrinking involves reducing the number of processes participating in a simulation,
thereby necessitating a redistribution of the work from failed processes. While this
can be efficient for some types of problems (e.g. molecular dynamics codes), it is
less efficient, for example, in finite element codes utilising domain decomposition
due to the reconstruction of operators and mappings. Respawning does not align
with the current use of queuing systems with fixed resource allocations, used on
most HPC clusters. We therefore pursue the spare invocation approach.

The first task is to modify the behaviour of the MPI routines in the event of a
failure. We specify our own error handler function to be called by MPI in the event
that any process detects another process has failed through any communicator.
The primary role of this handler is: to revoke the communicator, thereby ensur-
ing all other processes become aware of the failure, and; to throw an exception
which propagates up the call tree to a suitable point in the application code in
which backward-recovery can be managed. For transient simulation codes, this is
typically the outer time-integration loop.

The second task is to enrol spare processes to replace those which have failed
and rebuilding all communicators used in the application code. A call to MPI_Comm_agree
unlocks the spare processes (see above) so they can participate in the enrolling pro-
cess. The set of all processes is then shrunk to omit those which have failed, MPI
group operations are used to determine the failed ranks, and spare processes are
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reassigned the ranks of the failed processes using MPI_Group_translate _ranks. A
complete set of worker processes is then selected using MPI_Comm_split and any
other sub-communicators are similarly reconstructed.

2.4 State Recovery

The application must now achieve a globally consistent state on all processes.
Surviving processes simply rollback their dynamic data to the last in-memory
checkpoint. Spare processes must recover both the static and dynamic data. This
aspect of the algorithm is shown in Fig. 2.

Recall that spare processes wait at the beginning of execution, shortly after
the initialisation of MPI, until a failure occurs or the application terminates nor-
mally. Recovery of the static data on an initialising spare process then proceeds
as follows. The MPI message log is first retrieved from the state backup, located
on the surviving “buddy” process. The application code then proceeds with the
initialisation phase as normal. When communication operations are performed,
they are instead intercepted and the result of the call is returned directly from
the message log, rather than invoking calls to the MPI library itself. Surviving
worker processes are at a different point in the code execution and deadlock would
occur if collective communication was attempted. This strategy allows the recov-
ering process to initialise the static data structures completely independently of
all other surviving processes with very minimal code changes.

Upon commencing time-integration, the dynamic data is rolled forward from
the dynamic data checkpoint, resulting in a working replacement and an applica-
tion which is in a globally consistent state, whereby execution can continue.

2.5 Implementation

A prototype implementation of the algorithm has been developed in Nektar++-.
This package comprises of a set of libraries, written in C++, which implement
the spectral/hp element method in an efficient manner which aligns with their
mathematical formulation and current computer architectures [30,7,6,24], along
with a collection of physics solvers which build upon these libraries. These transient
solvers can tackle a wide range of problems involving incompressible and compress-
ible fluid dynamics, combustion, oceanic models using shallow water equations and
biomedical problems in arterial flow and cardiac electrophysiology. Many of these
applications require high-resolution scale-resolving simulations which are ideally
targeted towards massively parallel distributed clusters.

Nektar++ is heavily object-oriented and much of the static data is encapsu-
lated within classes and other rich data structures. The static data generated by
Nektar++ includes elemental high-order basis functions, integration weights, geo-
metric information, per-element matrices representing the necessary finite element
operators and the global data structures required for applying the conjugate gra-
dient algorithm to the complete problem. In particular, these global structures in-
clude an assembly operator for each solution field, represented as a surjective map,
which associates each local degree of freedom to a corresponding degree of free-
dom in the global system. The construction of each of these maps requires global
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collective communication in the form of a gather-scatter operation, implemented
by an external library. Other collective communication includes mesh partitioning,
construction of finite element operators and preconditioners and ensuring consis-
tent enforcement of boundary conditions in parallel, as well as auxiliary functions
such as collecting time-series data from specific coordinates in the domain.

One advantage of the design of Nektar++ is that all direct MPI operations
are managed through a single C++ class, which allowed rapid prototyping of the
resilience algorithms. Code was added to perform the message logging, message
replay and exchange of static- and dynamic-data remote in-memory checkpoints to
effect the resilience capabilities described above. Command-line parameters enable
the user to specify the number of spare processes, S to be reserved dynamically at
run-time from the total of N ranks requested and the rank offset k to be used for
storing state preservation data. The last S ranks are, by default, assigned to be
spares while the first W = N — S ranks are allocated as workers. Each worker rank
r sends state preservation data to rank (r + k) mod W, where 0 < k < W is the
stride. The value of k can be set to the number of ranks on a node or chassis, to
improve the resilience based on specific cluster configuration. Rank r also receives
state preservation data from rank (r + W — k) mod W.

Performance is analysed using the solver for the incompressible Navier-Stokes
equations, given by

%+(U-V)u: —Vp-i—é

V-u=0.

2
V<u,

In summary, these equations are solved using a velocity-correction high-order split-
ting scheme in which the pressure is first solved as a Poisson problem and the
velocity then adjusted to enforce the incompressibility constraint through a series
of Helmholtz problems [21]. The solutions to the pressure and velocity systems are
obtained using the preconditioned conjugate gradient method. Full details of the
implementation are described elsewhere [5].

3 Performance Analysis

To demonstrate the efficacy of our approach we measure performance character-
istics of the resilience algorithm on a UK Tier-2 High-Performance Computing
system. We first outline our test problem and environment and then discuss the
memory usage and performance considerations of our implementation.

3.1 Test problem and environment

The specific test problem we consider is laminar flow in a rectangular duct of
height D, streamwise length 20D and of width 10D. This is an intentionally trivial
problem designed to demonstrate the effectiveness and scalability of the resilience
algorithm under a relatively non-intensive computational load. A plug inlet veloc-
ity profile is prescribed with a Reynolds number of 10, based on the duct height
and inlet velocity. The domain is discretised into regular hexahedral spectral/hp
elements of size 0.4D x 0.4D x 0.04D in the streamwise, spanwise and cross-stream
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directions, respectively. The computational mesh consists of 31,249 hexahedral el-
ements, each using a polynomial order of 3 in each coordinate direction, giving 64
local modes per element. Accounting for three velocity components and a pressure
field, this gives a total of 3.37M degrees of freedom. A low-energy block precondi-
tioner is applied to the velocity and pressure systems to accelerate the convergence
of the conjugate gradient solver. Disk checkpointing in Nektar4++ is achieved by
writing a compressed binary file per process to the parallel filesystem.

The test system used is an SGI ICE XA system with 10,080 cores. Each of
the 280 nodes is equipped with dual 2.1Ghz, 18-core Intel Xeon processors with
hyper-threading enabled and 256GB RAM. All nodes are connected using a sin-
gle Infiniband fabric and share a common Lustre parallel filesystem. Tests are
performed across a range of working process counts, spanning two nodes, up to
sixty-four nodes, or N Pnax = 2304 processes. One process was assigned per hard-
ware core (up to 36 per node) and MPI bind-to-core was used to reduce the effects
of inter-socket memory bandwidth contention and lower-level cache thrashing. For
all fault tolerance tests, an additional node was allocated to ensure the number
of working processes remained the same and the offset value was set at k = 36 to
ensure state preservation data was stored on a different node.

In the results presented below timings are given as mean + standard deviations,
measured across all processes for five independent simulations. State protection
size measurements are given as mean + standard deviation across all processes for
one simulation, since memory usage is identical for repeated simulations.

3.2 Memory overhead

Fig. 3(a) shows a breakdown of per-process memory usage for the major com-
ponents of the fault-tolerant simulation code. Static data refers primarily to the
matrix operators and element mappings which are constructed during initialisa-
tion of the solver and remain unchanged throughout the time-integration phase.
This is the most significant component of the solver memory usage, particularly
for lower core counts. At higher core counts, this quantity begins to saturate due
to the emerging dominance of data structures whose size is independent of the
sub-problem size being tackled by that process.

The static backup component is the memory occupied (and subsequently trans-
ferred over the network) in providing resilience for the static data on a partner
process. Specifically, this comprises the message logs from all MPI communications
which were undertaken during the initialisation phase of the originating process.
This decreases steadily with process count up to the limit of the number of avail-
able cores. In particular, for higher core counts, this quantity continues decreasing.
The relative magnitude of the static backup size to the original static data size is
presented in Fig. 3(b) as a percentage. The difference in storage requirements
drops considerably at higher core-counts and is ~ 6% at N Pnax.

The dynamic backup component represents the memory occupied by the copy of
the solution vectors which are being advanced in time; therefore this data changes
at each time-step. Since this is only vector data, the size is over two orders of
magnitude smaller than the size of the static backup. The cost of storing the
process’s dynamic data and the backup of a partner process’s dynamic data backup
is approximately equal since, in the current implementation, no compression or
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Fig. 3 (a) Per-process memory usage as a function of number of processes. (b) Percentage
size of static data backup vs full backup.

erasure codes are applied to the checkpointing process and the work is equally
distributed.

Finally, the other data component relates to the memory occupied by code and
MPI initialisation. The latter increases with increasing core counts and becomes
one of the dominant memory costs for the largest core counts.

3.3 Checkpointing Performance

Remote in-memory checkpoint time for the dynamic data was measured on all
processes. Fig. 4 (solid line) shows strong scaling results of measured in-memory
checkpoint time, as a function of the number of processes. Checkpoint time mono-
tonically decreases with increasing parallelism, due to reduced data volume per
process, with little sign of saturation up to the limit of the available cores. In con-
trast, disk checkpointing (dashed line in Fig. 4) saturates around 288 cores and
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Fig. 4 Remote in-memory dynamic data checkpointing time for test problem (solid line),
compared with disk checkpointing (dashed line). For comparison the execution time per time-
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Fig. 5 Recovery time as a function of number of processes, broken down into the time to repair
communication and regenerate static data and, separately, the time taken to reinitialise the
external gather-scatter library. Time for initial simulation start-up is shown for comparison,
both for the original and fault-tolerant versions of the code.

increases for larger core counts. Above 2k cores, disk-checkpoint time is approx-
imately two orders of magnitude greater than remote in-memory check-pointing.
As a point of comparison, we also show the execution time per time-step, mea-
sured as the wall-time of advancing the PDE by one time-step without any form
of checkpointing.
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3.4 Recovery Performance

Recovery time describes the time from the detection of a process failure to the
operational recovery of the system, at the point where the simulation can continue.
This duration is typically a function of a number of variables, including problem
size per process, number of cores and frequency of check-pointing. To simplify
analysis of the resilience mechanism, the latter has been eliminated.

Fig. 5 shows the time taken to recover following a process failure, as a function
of the number of cores. Reconstruction (solid line) includes the communication
of the state preservation data, reinitialisation of MPI communicators and execu-
tion of the initialisation phase of the application code to regenerate the static
data. During initialisation, MPI operations utilise the result from the message log
rather than performing actual communication and therefore the process recovers
completely independently. This part of the algorithm scales well and takes less
than half a second at N Ppax. Since MPI communication during the initialisation
of the gather-scatter external library objects could not be logged by the prototype
implementation in Nektar+4, these are reinitialised exactly as for the normal
start-up and shown separately (dashed line) in Fig. 5. Until such communication
can be included in the message log, this is the dominant cost of recovery at larger
core counts.

As a point of reference, we also show in Fig. 5 the start-up time for the sim-
ulation using both the fault-tolerant implementation and the original unmodified
version. The overhead of message-logging and the exchange of state preservation
data can be seen to have limited impact on the start-up performance.

3.5 Concurrent failures

It is often standard practice, particularly for those codes which do not support
hybrid parallelism of the form MPI+X, to execute multiple MPI ranks on a single
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node. This leads to a situation in which a fault of the node would cause multiple
ranks to fail concurrently. This scenario is supported by the ULFM paradigm and
multiple spares will be enrolled to replace failed ranks. Figure 6 shows experiments
performed to examine the performance of recovery in the event of multiple con-
current failures. All failed ranks are co-located on the same node. Communication
costs increase slightly with the number of failed ranks due to the increasing vol-
ume of recovery data being exchanged. Variability due to network contention is
more evident with the linear scale. While the performance of static data recon-
struction is mostly independent of the number of failures, there is a slight increase
in the time taken to complete restoration with increasing numbers of failures due
to contention within the node.

4 Discussion

This study outlines a minimally intrusive, efficient and scalable approach to adding
resilience to existing time-dependent solvers, in which process data can be parti-
tioned into static and dynamic components. Our approach is demonstrated within
the Nektar4++ spectral/hp element framework. In contrast to the more general
design of existing approaches, we tailor our approach specifically to target time-
dependent solvers, thereby checkpointing only dynamically evolving data and us-
ing message-logging [15] to allow the static data to be locally reconstructed. This
moves significantly less data than a direct recovery of finite element operators, and
with minimal disruption to surviving processes. We have demonstrated promising
performance characteristics of this strategy for use with massively parallel sim-
ulations, where fault tolerance will become an essential ingredient of numerical
algorithms and software. There are several key advantages to the approach de-
scribed, which are discussed below.

Static data are protected through retention of the outcome of MPI commu-
nication exchanges during the initialisation phase. This brings two benefits. The
first is that the volume of recovery data is typically less than that of the orig-
inal data, reducing storage requirements and consequently improving intra-node
and inter-node performance by reducing data movement costs. The reason for this
in part stems from the fact that communication typically occurs on the bound-
ary of partitions for which the data is of one dimension lower than the volumetric
data. Consequently, for three-dimensional problems, the static data grows as (’)(n3)
while the boundary data only grows as O(n?). This trend can be clearly observed
in Fig. 3(a).

The second advantage is that existing codes require very little modification
in order to augment them with this resilience capability. Since MPI communi-
cation occurs through the MPI API, these calls can be intercepted to inject the
resilience layer - logging outputs during the initial execution, and replying those
outputs during any subsequent recovery. This is a significant advantage for large
object-oriented codes, such as Nektar++4, in which raw data are often encapsu-
lated within layers of class hierarchies and other language semantics, and are not
easily accessible from a single central location without substantial rewriting of the
application.

Performance and efficiency of the algorithm is critical to minimise the impact
of the resilience layer on the normal execution of the code. All state preservation
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operations which occur during the normal error-free state are pairwise and do
not involve the use of any collective communications. This allows the algorithm to
scale with the volume of data per process, independent of the number of processes.
Coordinated communication is only required during the restoration process in
order for communicators to be repaired consistently and is independent of the
volume of data per process. Following restoration of the communicators, the spare
process receives all the preserved state data in a single pairwise communication
and recovers independently of all other processes. These aspects of the algorithm
therefore scale with the number of processes and data per process respectively, but
independent of the total number of degrees of freedom.

The implementation was assessed through a medium-sized test problem of vis-
cous flow in a square duct. For the largest runs considered up to N Ppax, this
corresponded to an average of just 13 elements per process, or 1430 degrees of
freedom. At this level of granularity, the parallel efficiency of the simulation it-
self drops considerably. Dynamic check-pointing is the most critical performance
consideration as it occurs frequently throughout the simulation. It was shown
to strong-scale up to N Pmax and, as expected, compares favourably against tra-
ditional parallel file-system check-pointing (Fig. 4). In contrast, the static data
backup occurs only once, and static data restoration occurs only in the event of a
failure. Reconstruction of the static data was also shown to scale well up to N Pmax
(Fig. 5).

4.1 Topology-aware algorithms

The prototype implementation described here places the partner process at a rank-
offset specified at runtime. Assuming ranks are allocated sequentially by core and
then by node, this allows the user to ensure data is backed up to a node which
is different to the one on which the original process resides. This also allows for
increasing resilience when there are higher-level clusterings of processes, allowing
backups to span multiple chassis or racks. However, for complex multi-layered
network topologies, where communication between all nodes is non-uniform, a
balance between performance and resilience may need to be sought. In such cases,
a grouping of ranks based on topology may be more appropriate.

This consideration also applies to the placement of spare ranks. The current
implementation assumes uniform communication performance between nodes and
the highest S ranks are reserved as spares. For non-uniform topologies, distributing
spares throughout the range of ranks may be a more performant strategy and allow
for the selection of a topologically nearest spare to be chosen in the event of failure.

4.2 Limitations

A number of assumptions are inherent in the algorithm developed. The most sig-
nificant of these is that a large portion of the memory required during simulation
contains static data, such as finite element operators, which are created at the be-
ginning of the simulation and subsequently do not change during execution. This
inherently creates challenges for applying this approach to simulations where the
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domain or computational mesh is modified in time, such as arbitrary Lagrangian-
Eulerian (ALE) methods, r-adaptation (mesh movement) or h-adaptation (mesh
adaptivity). In the first two cases, the geometry-dependent component of the finite
element operators is time-dependent and that portion would need to be included as
part of the dynamic data. For mesh adaptive codes, message-logging could be used
and the static backup could be regenerated with each mesh adaptation. The effi-
cacy of this would depend on the frequency of mesh adaptation and the likelihood
of a failure occurring. However, neither ALE, r-adaptivity or mesh adaptation are
currently supported by Nektar++ so these cases have not been explored further.

Related to this, non-determinism of simulations is only supported where the
non-determinism forms part of the dynamic data (for example, the initial condi-
tion) or is incorporated into static backup as a consequence of MPI communica-
tion. The algorithm could be extended to allow non-deterministic components to
be manually included with the static backup at the cost of increasing the invasive-
ness of the approach.

A further limitation arose due to the external nature of the gather-scatter li-
brary, GSLib, used for assembling distributed finite element operators. Since this
code is a third-party library, it directly calls the MPI API without passing through
the prototype resilience layer developed within Nektar++4-. The recovery of com-
munication within the application code includes repairing all MPI communicators,
but necessarily required reinitialising the gather-scatter library, which involves col-
lective communication. This was therefore shown separately in Fig. 5.

4.3 Future Work

The resilience algorithm was prototyped through modification of the communica-
tion classes within Nektar++. While this allowed all implementation to be con-
tained within a single section of code, it prevented third-party libraries taking
advantage of the algorithm. Future work will focus on extracting the resilience
algorithm to an independent library which will intercept MPI API calls for both
application and any third-party library codes. This should eliminate the perfor-
mance bottleneck introduced by the gather-scatter library during recovery (dashed
line, Fig. 5) and allow strong scaling of the approach to be retained to many thou-
sands of processes.
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